跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊賓
研究生(外文):Chun-Pin Huang
論文名稱:多面體矽氧烷寡聚物(POSS)/聚胺基甲酸酯有機-無機奈米複合材料的製備與物性之研究
論文名稱(外文):Study on Preparation and Physical Properties of Polyhedral Oligomeric Silsesquioxane/Polyurethane Organic-Inorganic Nanocomposites
指導教授:王怡仁王怡仁引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:101
中文關鍵詞:相容度奈米結晶奈米複合材料聚胺基甲酸酯多面體矽氧烷寡聚物
外文關鍵詞:CompatibilityNanocrystalNanocompositePolyurethanePolyhedral oligomeric silsesquioxane
相關次數:
  • 被引用被引用:3
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
多面體矽氧烷寡聚物(POSS)/聚胺基甲酸酯(PU)奈米複合材料的合成是採二階段合成,即以聚醇(含聚酯型與聚醚型)和帶有雙醇基的多面體矽氧烷寡聚物與芳香族的二異氰酸鹽(MDI)合成預聚物,再與適當比例的丁二醇(1,4BD)為鍵延長劑進行聚合而成。
合成奈米複合材料的鑑定,則藉由紅外線光譜儀(FT-IR)、核磁共振光譜儀(1H、13C-NMR)及膠體滲透層析儀(GPC)鑑定,組成成份間分子相容性,則藉由掃描微差熱卡計(DSC)和動態機械分析儀(DMA)測試,並經由FT-IR特性吸收峰的偏移特性判定分子相容性之成因。複合材料的結晶和形態分別以X光分析與穿透式電子顯微鏡及原子力顯微鏡分析,機械性質則以萬能拉力機和DMA進行測試。
實驗結果顯示,聚酯型奈米複合材料的玻璃轉移溫度(Tg)會隨著所含POSS含量的增加向高溫方向移動,表示軟硬鏈段間具較佳的相容性;而聚醚型的奈米複合材料軟鏈段Tg會隨著所含POSS含量的增加往低溫移動,此乃因硬鏈段自軟鏈段析出造成軟鏈段純化現象所致。X-ray的結晶分析獲知POSS在複合材料中會形成奈米結晶(nanocrystal)。機械性質分析獲知,POSS的引入將可有效提昇複合材料之強度,當含18wt% POSS時,楊氐係數增加2.5倍,最大應大增加4倍。
Polyhedral oligomeric silsesquioxane/polyurethane nanocomposites have been prepared based on 4,4-dipheylmethane diisocyanate (MDI) , polyol (polyester diol or polyether diol) and POSS-diol and 1,4-butanediol(BD) as the chain extender by two stages.
The synthesis and characteristics of POSS/PU nanocomposite have been analyzed by Fourier-transform infrared spectroscopy (FT-IR), solution-state NMR (1H-NMR and 13C-NMR) and gel permeation chromatography (GPC). The compatibility in nanocomposite was investigated by differential scanning calorimeter (DSC) and dynamic mechanical analysis (DMA), and the FT-IR shift of the absorption peak was relative to nest PU was as index for the compatibility of nanocomposites. The morphology of nanocomposite was also investigated by X-ray diffraction, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The mechanical properties were performed to investigate by tensile machine and DMA.
According to DSC and DMA results, the glass transition temperature (Tg) raised with increase of the amount of POSS content in the POSS/PU nanocomposite of polyester type due to the better miscibility between the hard segment and soft segment. The Tg decreased with increase of the amount of POSS content in the polyether type due to the purification effects of the hard segment excluded from the soft segment. The morphology of nanocomposite was observed by X-ray, TEM and AFM. The dispersion of POSS molecules in the PU matrix exists in the form of nanocrystal. Tensile strength and stiffness were improved as POSS added. At a 18 wt% POSS loading, a 4-fold increasing in ultra tensile stress and 2.4-fold increase in Young’s modulus.
目錄


中文摘要 ---------------------------------------------- Ⅰ
英文摘要 ---------------------------------------------- Ⅲ
誌謝 ---------------------------------------------- Ⅴ
目錄 ---------------------------------------------- Ⅵ
表目錄 ---------------------------------------------- Ⅷ
圖目錄 ---------------------------------------------- ⅩⅠ
第一章 序論 ----------------------------------------- 1
1-1 前言 ----------------------------------------- 1
1-2 研究動機 ------------------------------------ 3
第二章 文獻回顧 ------------------------------------ 7
2-1 多面體矽氧烷寡聚合物 ------------------------- 7
2-1-1 多面體矽氧烷寡聚物(POSS)材料的發展起源 ------ 7
2-1-2 多面體矽氧烷寡聚物(POSS)的定義與製備 --------- 7
2-1-3 多面體矽氧烷寡聚物(POSS)與高分子共聚方式------ 8
2-2 聚胺基甲酸酯---------------------------------- 13
2-2-1 聚胺基甲酸酯簡介 ----------------------------- 13
2-2-2 聚胺基甲酸酯的化學反應 ---------------------- 14
2-2-3 微相分離理論 -------------------------------- 15
第三章 實驗 ---------------------------------------- 20
3-1 實驗藥品 ------------------------------------ 20
3-2 實驗儀器 ------------------------------------ 22
3-3 實驗流程 ------------------------------------ 25
3-3-1 聚胺基甲酸酯之製備(Polyurethane, PU) ----------- 25
3-3-2 多面體矽氧烷寡聚/聚胺酯共聚物之製備
(POSS/PU copolymers) ------------------------- 26
3-4 實驗步驟 ------------------------------------ 27
3-4-1 聚胺基甲酸酯(PU)之合成 ---------------------- 27
3-4-2 多面體矽氧烷寡聚物/聚胺酯共聚物之製備
(POSS / PU copolymers) ------------------------ 27
第四章 結果與討論 ---------------------------------- 36
4-1 合成物合成鑑定 ------------------------------- 36
4-1-1 FT-IR分析 ----------------------------------- 36
4-1-2 液態核磁共振(Solution NMR)光譜分析 ----------- 37
4-1-3 分子量與分子量分佈(Polydispersity Index)鑑定 ----- 38
4-2 合成物熱性質分析 ---------------------------- 39
4-2-1 微差掃描熱分析(DSC) -------------------------- 39
4-2-2 熱重損失分析(TGA) ---------------------------- 42
4-3 動態機械性質分析(DMA)--------------------- 43
4-4 型態學(morphology)分析 ----------------------- 44
4-4-1 X-ray分析 ----------------------------------- 44
4-4-2 穿透式電子顯微鏡分析(TEM) ------------------- 45
4-4-3 原子力顯微鏡(AFM) --------------------------- 45
4-5 機械性質分析 ------------------------------- 46
4-5-1 萬能拉力機(Tensile) -------------------------- 46
第五章 結論 --------------------------------------- 78
第六章 參考文獻 ----------------------------------- 79


表目錄


表1-1 多面體矽氧烷寡聚物(POSS)與其它填充料之特性比較 5
表2-1 多面體矽氧烷寡聚物(POSS)與高分子共聚方式優缺點 10
表3-1 樣品代號說明 -------------------------------- 30
表3-2 多面體矽氧烷寡聚物/聚胺酯共聚物合成莫耳比 ---- 31
表3-3 多面體矽氧烷寡聚物/聚胺酯共聚物合成莫耳比 ---- 32
表4-1 FT-IR特性吸收峰 ----------------------------- 48
表4-2 PUB系列共聚物之1H-NMR、13C-NMR的化學位移 -- 49
表4-3 PUT系列共聚物之1H-NMR、13C-NMR的化學位移 -- 50
表4-4 PUB系列共聚物之數目與重量平均分子量 --------- 51
表4-5 PUT系列共聚物之數目與重量平均分子量 --------- 51
表4-6 PUB系列共聚物之熱性質 ----------------------- 52
表4-7 PUT系列共聚物之熱性質 ----------------------- 53
表4-8 PUB系列共聚物之拉力性質 --------------------- 54
表4-9 PUT系列共聚物之拉力性質 --------------------- 54









圖目錄


Scheme4-1 PU之合成 ---------------------------------- 28
Scheme4-2 PU/POSS copolymers之合成 ------------------ 29
Scheme4-3 PUB系列共聚物之1H-NMR、13C-NMR的化學位移
標示 ------------------------------------- 55
Scheme4-4 PUT系列共聚物之1H-NMR、13C-NMR的化學位移
標示 ------------------------------------- 56
圖1-1 奈米複合材料的演進歷程 ---------------------- 6
圖1-2 本研究實驗架構 ------------------------------ 6
圖2-1 梯狀(Ladder)和多面體(Polyhedral)之聚矽氧烷 ----- 11
圖2-2 多面體矽氧烷寡聚物(RSiO1.5)n之立體結構圖 ----- 11
圖2-3 多面體矽氧烷寡聚物(RsiO1.5)8之化學立體結構圖 - 12
圖2-4 利用corner capping 所合成出帶有各式官能基之
POSS ------------------------------------ 12
圖2-5 聚胺基甲酸酯之二異氰酸鹽種類 ---------------- 17
圖2-6 聚胺基甲酸酯之聚二元醇種類 ------------------ 18
圖2-7 聚胺基甲酸酯之鏈延長劑種類 ------------------ 19
圖2-8 聚胺基甲酸酯之合成反應與構造圖 -------------- 19
圖4-1 PUB系列共聚物之FT-IR圖 -------------------- 57
圖4-2 PUT系列共聚物之FT-IR圖 -------------------- 57
圖4-3 PUB系列共聚物之1H-NMR圖(CDCl3,d6) -------- 58
圖4-4 PUB系列共聚物之13C-NMR圖譜(CDCl3,d6) ----- 59
圖4-5 PUT系列共聚物之1H-NMR圖(CDCl3,d6) -------- 60
圖4-6 PUT系列共聚物之13C-NMR圖譜(CDCl3, d6) ------ 61
圖4-7 PUB系列共聚物之DSC圖 --------------------- 62
圖4-8 PUB系列共聚物之DSC圖 --------------------- 62
圖4-9 PUT系列共聚物之DSC圖 --------------------- 63
圖4-10 PUT系列共聚物之DSC圖 --------------------- 63
圖4-11 PUT系列共聚物之N-H吸收光譜 ---------------- 64
圖4-12 PUT系列共聚物之Si-O-Si吸收光譜 ------------- 64
圖4-13 PUB系列共聚物之TGA在氮氣下 --------------- 65
圖4-14 PUB系列共聚物之TGA在氮氣下 --------------- 65
圖4-15 PUB系列共聚物之TGA在空氣下 --------------- 66圖4-16 PUB系列共聚物之TGA在空氣下 --------------- 66
圖4-17 PUT系列共聚物之TGA在氮氣下 --------------- 67
圖4-18 PUT系列共聚物之TGA在氮氣下 --------------- 67
圖4-19 PUT系列共聚物之TGA在空氣下 --------------- 68
圖4-20 PUT系列共聚物之TGA在空氣下 --------------- 68
圖4-21 PUB系列共聚物之損失模數 -------------------- 69
圖4-22 PUB系列共聚物之損失模數 -------------------- 69
圖4-23 PUT系列共聚物之損失模數 -------------------- 70
圖4-24 PUT系列共聚物之損失模數 -------------------- 70
圖4-25 PUB系列共聚物之儲存模數 -------------------- 71
圖4-26 PUB系列共聚物之儲存模數 -------------------- 71
圖4-27 PUT系列共聚物之儲存模數 -------------------- 72
圖4-28 PUT系列共聚物之儲存模數 -------------------- 72
圖4-29 PUB系列共聚物之X-ray ----------------------- 73
圖4-30 PUB系列共聚物之X-ray ----------------------- 73
圖4-31 PUB系列共聚物之X-ray ----------------------- 74
圖4-32 POSS/PU copolymers斷面穿透式電子顯微鏡圖 ---- 75
圖4-33 PUB07-P03之AFM圖 ------------------------- 76
圖4-34 POSS在聚胺基甲酸酯之分散型態示意圖 --------- 77
第六章 參考文獻

1.Andre, L. Polym. Prep., 235(2000)
2.Premachandran, R.; Banerjee, S.; John, V. T.; McPherson, G. L.; Akkara, J. A.; Kaplan, D. L., Chem. Mater., 9, 1342(1997)
3.Huang, J. M.; Sooklal, K.; Murphy, C. J.; Ploehn, H. J., Polyamine-Quantum Dot Nanocomposites: Linear versus Starburst Stabilizer Architectures, Chem Mater., 11, 3595(1999)
4.Selvan, S. T.; Hayakawa, T.; Nogami, M.; Moller, M., Block Copolymer Mediated Synthesis of Gold Quantum Dots and Novel Gold-Polypyrrole Nanocomposites, J. Phys. Chem. B, 103, 7441(1999)
5.Lin, B. H.; Morkved, T. L.; Meron, M.; Huang, Z. Q.; Viccaro. P. J.; Jaeger, H. M.; Williams, S. M.; Schlossman, M. L. J. Appl. Phys. ,85, 3180(3697)
6.Zhang, J.; Wang, B. J.; Ju, X.; Liu, T.; Hu, T. D., New observations on the optical properties of PPV/TiO2 nanocomposites, Polymer, 42, 3697(2001)
7.Shao, P. L.; Mauritz, K. A.; Moore, R. B., Perfluorosulfonate ionomer]/[SiO2-TiO2] nanocomposites via polymer-in situ sol-gel chemistry: Sequential alkoxide procedure, J. Polym. Sci. Part B: Polym. Phys., 34, 873(1996)
8.Hajji, P.; David, L.; Gerard, J. F., Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate, Pascault, J. P.; Vigier, G. J. Polym. Sci. Part B: Polym. Phys. ,37, 3172(1999)
9.Hsiue, G. H.; Kuo, W. J.; Huang, Y. P.; Jeng, R. J. Microstructural and morphological characteristics of PS–SiO2 nanocomposites, Polymer , 41,2813(2000)
10.Pan, Y. X.; Yu, Z. Z.; Ou, Y. C.; Hu, G. H., A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization, J. Polym. Sci. Part B: Polym. Phys., 38, 1626(2000)
11.Du, X. S.; Xiao, M.; Meng, Y. Z., Facile synthesis of highly conductive polyaniline/graphite nanocomposites, European Polymer Journal, 40, 1489(2004)
12.Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A., Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weaknes, Adv. Mater., 12, 750(2000)
13.Gong, X. Y.; Liu, J.; Baskaran, S.; Voise, R. D.; Young, J. S., Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites, Chem. Mater., 12, 1049(2000)
14.Favier, V.; Chanzy, H.; Cavaille, J. Y., Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, 28, 6365(1995)
15.Hajji, P.; Cavaille, J. Y.; Favier, V.; Gauthier, C.; Vigier, G., Polym. Composite, 16, 612(1996)
16.Ogata, N. Kawakage, S.; Ogawa, T.; Yanagawa, T.; Ogihara, T. Sen-Igakkaishi, 52, 457(1996)
17.Cho, J. W.; Paul, D. R., Nylon 6 nanocomposites by melt compounding , Polymer, 42, 1083(2001)
18.Shelley, J. S.; Mather, P. T.; Devries, K. L., Reinforcement and environmental degradation of nylon-6/clay nanocomposites , Polymer, 42, 5849(2001)
19.Fong, H.; Liu, W. D.; Wang, C. S.; Vaia, R. A., A phenomenological study of the hot-tool welding of thermoplastics Part 3. Polyetherimide, Polymer, 42, 775(2001)
20.Usuki, A.; Hasegawa, N. Kadoura, H.; Okamoto, T., Three-Dimensional Observation of Structure and Morphology in Nylon-6/Clay Nanocomposite, Nano Lett., 1, 271(2001)
21.Kin, B. K.; Seo, J. W.; Jeong, H. M., Morphology and properties of waterborne polyurethane/clay nanocomposites, European Polymer Journal, 39, 85(2003)
22.Finnigan, B.; Martin, D.; Halley, P.; Truss, R.; Campbell, K., Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates, Polymer, 45, 2249(2004)
23.Tyan, H. L.; Leu, C. M.; Wei, K. H., Effect of Reactivity of Organics-Modified Montmorillonite on the Thermal and Mechanical Properties of Montmorillonite/Polyimide Nanocomposites, Chem. Mater., 13, 222(2001)
24.Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Johnston, N. J.; Smith Jr, J. G.; Connell, J.W., Preparation and characterization of polyimide/organoclay nanocomposites, Polymer, 43, 813(2002)
25.Sanchez, C.; Soler-Illia, G. J. de A. A.; Ribor, F.; Lalot, T.; Mayer, C. R.; Cabuil, V., Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks, Chem. Mater., 13, 3061(2001)
26.Klok, H. A.; Lecommandoux, S., Supramolecular Materials via Block Copolymer Self-Assembly, Adv. Mater., 13, 1217(2001)
27.Tsukruk, V. V., Assembly of supramolecular polymers in ultrathin films, Prog. Polym. Sci., 22, 247(1997)
28.呂奇明, 低介電多面體倍半矽氧烷寡聚物(POSS)/聚亞醯胺奈米複合材料之合成與性質分析, 國立交通大學博士論文(2003)
29.李建裕, 有機/無機多面體矽氧烷寡聚物奈米複合材料, 國立交通大學碩士論文(2002)
30.LeBaron, P. C.;Wang, Z.; Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview, Appl. clay sci , 15, 11(1999)
31.Abad, M. J.; Barral, L.; Fasce, D. P.; Williams, R. J. J., Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS), Macromolecules, 36, 3128(2003)
32.Costa, R. O. R.; Vasconcelos, W. L.; Tamaki, R.; Laine, R. M., Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores, Macromolecules, 34, 5398(2001)
33.LeBaron, P. C.;Wang, Z.; Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview, Appl. clay sci , 15, 11(1999)
34.Wang, T. L.; Hsieh, T. H., Effect of polyol structure and molecular weight on the thermal stability of segmented poly(urethaneureas), Polymer Degradation and Stability, 55, 95(1997)
35.Meads J. A.; Kipping F. S. J. Chem. Soc., 107, 459(1915)
36.Brown J. F.; Vogt L. H. J. Am. Chem. Soc., 87, 4313(1965)
37.http://www.hybridplastics.com
38.Baney, R. H. et al., Silsesquioxanes, Chem. Rev., 95, 1409(1995)
39.Feher, F, J., Soulivong, D.; Lewis, G. T., Facile Framework Cleavage Reactions of a Completely Condensed Silsesquioxane Framework, J. Am. Chem. Soc., 119, 11323(1997)
40.Zheng, L.; Waddon, A. J.; Farris, R. J.; Couglin, E. B., X-ray Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane Copolymers, Macromolecules, 35, 2375(2002)
41.Haddad T. S. et al., ACS Polym. Mater.: Sci. Eng., 81, 611(1999)
42.Martynova, T. N.; Chupakhina, T. I., Monosubstituted octasilasesquioxanes, Appl. organomet. chem, 13, 213(1999)
43.Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. M.; Soles, C. L.; Hristov, H. A.; Yee, A. F., Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization, J. Am. Chem. Soc., 120, 8380(1998)
44.Leu, C.-M.; Chang, Y.-T.; Wei, K.-H., Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine, Macromolecules, 36, 9122(2003)
45.Haddad, T. S.; Lichtenhan, J. D., Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules, 29, 7302(1996)
46.Leu, C.-M.; Chang, Y.-T.; Wei, K.-H., Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Applications, Chem. Mater., 15, 3721(2003)
47.Fu, B. X.; Lee, A. ;Haddad, T. S., Styrene-Butadiene-Styrene Triblock Copolymers Modified with Polyhedral Oligomeric Silsesquioxanes, Macromolecules, 37, 5211(2004)
48.Leu, C.-M.; Reddy, G. M.; Wei, K.-H.; Shu, C.-F., Synthesis and Dielectric Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites, Chem. Mater., 15, 2261(2003)
49.Kim, B.-S.; Mather, P. T., Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane: 1. Synthesis and Characterization, Macromolecules, 35, 8378(2002)
50.Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M., Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site, J. Am. Chem. Soc., 123, 12416(2001)
51.Huang, Jun-chao; He, Chao-bin; Xiao, Yang; Mya, Khine Yi; Dai, Jie; Siow, Yeen Ping, Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties, Polymer, 44, 4491(2003)
52.Zheng, L.; Farris, R. J.; Coughlin, E. B., Novel Polyolefin Nanocomposites: Synthesis and Characterizations of Metallocene-Catalyzed Polyolefin Polyhedral Oligomeric Silsesquioxane Copolymers, Macromolecules, 34, 8034(2001)
53.Zheng, L. et al., Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane, J. Polym. Sci.: Part A: Polym. Chem., 40, 885(2002)
54.Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan, J. D., Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers, Macromolecules, 32, 1194(1999)
55.Zheng L.; Richard J. F.; Coughlin, E. B., Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization, J. Polym. Sci.: Part A: Polym. Chem., 39, 2920(2001)
56.Laine, E. R. et al., Organic/Inorganic Hybrid Materical; Matericals Research Society: Warrendale, PA, 519(1998)
57.Haddad, T. S. et al., Polym. Prepr.(Am. Chem. Soc. Polym. Div.) 40, 496(1999)
58.施宏道, 多面體寡體矽石/甲基丙烯酸脂系之奈米結構混成材料之研究, 國立中央大學碩士論文(2002)
59.Jeffrey, P.; Krzysztof, M., The Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization: Homopolymers and Block Copolymers from Polyhedral Oligomeric Silsesquioxane Monomers, Macromolecules, 33, 217(2000)
60.Copper, S. L.; Lelah, M. D. “Polyurethane in Medicine”,(1986)
61.Wang Feng, “Polydimethylsioxane Modification of Segmented Thermoplastic Polyurethanes and Polyureas”,(1998)
62. Oertel Günter, :Polyurethane Handbook”,(1994)
63.Bailet, M. E.; Kirss, V.; Spaunburgh, R. G. Ind. Eng. Chem., 48, 794(1956)
64.Schoolenberger, C. S. et. al., “Rubber world”, 549(1958)
65.Saunders, J. H.; Frisch, K. C., “Polyurethane, chemistry and technology”, 65(1969)
66.Copper, S. L.; Tobolsky, A. V. J. Appl. Polym. Sci., 10, 1837(1966)
67.Li, C.; Goodman, S. L.; Albrecht, R. M.; Cooper, S. L., Morphology of segmented polybutadiene-polyurethane elastomers, Marcomolecules, 21, 2367(1988)
68.Li, C.; Cooper, S. L., Polymer, 31, 3(1990)
69.Serrano, M.; Macknight, W. J.; Thomas, E. L.; Ottino, J. M., Polymer, 28, 1667(1987)
70.Serrano, M.; Macknight, W. J.; Thomas, E. L.; Ottino, J. M., Polymer, 28, 1674(1987)
71.Van Bogart J. W. C.; Lilaonitkul, A.; Cooper, S. L. Adv Chem. Ser., 176, 3(1979)
72.Copper, S. L.; Lelah, M. D., “Polyurethane in Medicine”, 21-22(1986)
73.Sauer, B. B.; McLean, R. S., AFM and X-ray Studies of Crystal and Ionic Domain Morphology in Poly(ethylene-co-methacrylic acid) Ionomers, Macromolecules, 33, 7939(2000)
74.Kanchanasopa, M.; Manias, E.; Runt, J., Solid-State Microstructure of Poly(L-lactide) and L-Lactide/meso-Lactide Random Copolymers by Atomic Force Microscopy (AFM), Biomacromolecules, 4, 1203(2003)
75.Socrates, G. “Infrared Characteristic Group Frequencies”, Chichester, New York, Wiley(1980)
76.Wang, C. B.; Copper, S. L., Carbon-13 NMR investigation of a poly(urethane-urea) system, Macromolecules, 25, 1068(1983)
77.Ishihara, H.; Kimura, I.; Saito, K.; Ono, H., J. Macromol. Sci. Phys., Part B, 10, 591(1974)
78.Sánchez-Adsuar, M. S., Influence of the composition on the crystallinity and adhesion properties of thermoplastic polyurethane elastomers, Int. j. adhes. adhes, 20, 291(2000)
79.Xu, H.; Kuo, S.-W.; Lee, J.-S.; Chang, F.-C., Preparations, Thermal Properties, and Tg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes , Macromolecules, 35, 8788(2002)
80.Lan, P.N.; Corneillie, S.; Schacht, E.; Davies, M.; Shard, A., Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols, Biomaterials, 17, 2273(1996)
81.Day, V. W.; Klemperer, V. W.; Mains, V. V.; Millar, D.M., Molecular building blocks for the synthesis of ceramic materials: [Si8O12](OCH3)8, J. Am. Chem. Soc,107, 8262(1985)
82.Wang, Y. Z.; Hsieh, K. H.; Chen, L. W.; Tseng, H. C., Effect of compatibility on heat capacity of molten polyblends, J. Appl. Polym. Sci., 49, 1047(1993)
83.Romo-Uribe, A.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D., Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers, J. Polym. Sci., Part B: Polym. Phys., 36, 1857(1998)
84.Bogdanov, B.; Toncheva, V.; Schacht, E.’ Finelli, F.; Sarti, B. Scandola, M., Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols, Polymer, 40, 3171(1999)
85.Culin, Jelena; Andreis, Mladen; Šmit, Ivan; Veksli, Zorica; Anzlovar, Alojz; Zigon, Majda, Motional heterogeneity and phase separation of functionalized polyester polyurethanes, European Polymer Journal, 40, 1857(2004)
86.Fu, B. X. et al., Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxane (POSS) molecules, Polymer, 43, 599(2001)
87.Fu, B. X. et al., Physical gelation in ethylene-propylene copolymer melts inducee by polyhedral oligomeric silsesquioxane (POSS) molecules, Polymer, 44, 1499(2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top