跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李喬賓
研究生(外文):Chiao-Pin Li
論文名稱:PLGA奈米粒子之製備及表面修飾對細胞標的化能力之探討
論文名稱(外文):Effect of surface modification of PLGA nanoparticles on targeting cells
指導教授:鍾次文
指導教授(外文):Tze-wen Chung
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:奈米粒子聚乳酸-聚甘醇酸共聚物幾丁聚醣標的化複合乳化伴隨溶劑揮發法
外文關鍵詞:targetingnanoparticlePLGAchitosanmultiple emulsion solvent evaporation technique
相關次數:
  • 被引用被引用:10
  • 點閱點閱:567
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要探討,以聚乳酸-聚甘醇酸共聚物(PLGA(50:50))
為基材,利用複合乳化伴隨溶劑揮發法製備奈米粒子,以不同處理方
法與加入不同材料對粒子表面進行修飾,並探討其對奈米粒子特性與
對細胞標的化能力之影響。
結果顯示,本研究製備之奈米粒子粒徑範圍約在250~300nm,以
表面披覆法加入CS-PEG 之奈米粒子為例,由於PEG 效應,使粒徑下
降至248.6±5.62nm;由TEM 圖可以判斷奈米粒子之型態趨近於圓形,
當加入不同之材料可觀察出有殼層型態。表面電位值的測量結果範圍
為-5.74±0.36∼6.37±0.85mv,隨著加入的材料而有所不同。另外,
以不同奈米粒子包覆Quinacrine 螢光染劑,包覆效率皆可控制在50
∼60%;在體外釋放試驗中,其累積釋放百分比都在24 小時即達100
%,並不隨粒子種類不同而有所差別。
細胞標的化研究中,結果顯示表面帶負電之PLGA 奈米粒子較難
貼覆細胞,PLGA / CS-PEG 奈米粒子貼覆細胞量明顯比前者強,由於
PEG 效應延緩最大貼覆細胞量時間;PLGA / CS-RGD 奈米粒子不僅表
面帶正電荷且具有特殊配位體RGD,更提升對細胞之貼覆量與具有主
動式標的化能力。本研究更選取PC-12 活體細胞進行實驗,結果顯示
奈米粒子具有相同之貼覆能力且PLGA / CS-RGD 奈米粒子仍具有標的
化能力。
因此,本研究提供一個具標的化之藥物輸送載體系統,未來應可
運用在癌組織與心血管疾病之治療。
We investigate the effect of different surface characteristics of PLGA
nanoparticle fabricated by different techniques on the cellular uptake capacity by the
fibroblast.
The results show that the particle sizes of PLGA nanoparticles and ranged from 250~300nm which is dependent on fabrication techniques. The zeta potentials of PLGA nanoparticles and raged from -5.74±0.36∼6.37±0.85mv that selected to surface compositions of nanoparticles. Other characteristics for Quinacrine looked PLGA nanoparticle such as encapsulation efficiency was about the same for all nanoparticles. The results of cellular uptake of different surface composition of PLGA nanoparticle of fibroblast shows that surface with CS-RGD cause are the most effective , CS-PEG and are next which with chitosan of non-additive of PLGA nanoparticles are less effective within 1hr of observation. In addition, PLGA nanoparticle with CS-RGD surface modifications can also effective uptake by PC 12 cells.
中文摘要………………………………………………………………Ⅰ
英文摘要 ………………………………………………………………Ⅲ
謝誌……………………………………………………………………Ⅳ
目錄……………………………………………………………………Ⅴ
圖索引…………………………………………………………………Ⅷ
表索引 ………………………………………………………………XII

§第一章 緒論
§1-1 藥物控制釋放傳遞系統…………………………………………1
§1-2 生物降解性之奈米粒子…………………………………………4
§1-3 奈米粒子之應用…………………………………………………10
§1-4 研究目的…………………………………………………………16

§第二章實驗設備與方法
§2-1 實驗藥品…………………………………………………………17
§2-2 實驗儀器…………………………………………………………18
§2-3 實驗整體流程……………………………………………………20
§2-4 實驗方法與步驟…………………………………………………21
§2-4-1 PLGA 奈米粒子之製備 ………………………………22
§2-4-1 (a) 實驗流程圖 …………………………………22
§2-4-1 (b) 實驗步驟 ……………………………………24
§2-4-2奈米粒子之特性分析…………………………………25
§2-4-3奈米粒子包覆之螢光劑濃度測量……………………30
§2-4-4奈米粒子之表面材料改質……………………………31
§2-5 生醫工程之應用---奈米粒子人體纖維母細胞標的化測定…33
§2-5-1 細胞培養………………………………………………33
§2-5-2 奈米粒子標的化測定步驟……………………………35
§2-5-3雷射共軛焦顯微鏡(Confocal Laser Scanning Microscope) …………………………………………36

§第三章 結果與討論
§3-1 表面材料經改質後之特性分析………………………………39
§3-1-1接觸角量測(contact angle measurement)………39
§3-1-2全反射-傅立葉轉換紅外線光譜分析 -(ATR-FTIR)…41
§3-2奈米粒子之特性分析……………………………………………44
§3-2-1 粒徑分析 (particles size)…………………………44
§3-2-2 穿透式電子顯微鏡之觀察 ……………………………47
§3-2-3 表面電位 (zeta potential)分析……………………52
§3-2-4 奈米粒子之包覆效率分析 ……………………………57
§3-2-5 奈米粒子之釋放曲線探討 ……………………………59
§3-3奈米粒子對纖維母細胞之標的化測定…………………………61
§3-3-1 PLGA奈米粒子進行細胞標的化研究 …………………61
§3-3-2 PLGA / CS-PEG奈米粒子進行細胞標的化研究………64
§3-3-3 PLGA / CS-GRGD奈米粒子進行細胞標的化研究 ……70
§3-4奈米粒子對不同細胞(PC-12)之標的化測定 ………………78

§第四章 結論 ………………………………………………………85

§第五章 未來展望…………………………………………………88

§第六章 参考文獻…………………………………………………89
[1] S. C. Khanna, M. Soliva, P. Speiser. Epoxy rein beads as a pharmaceutical dosage form, Method of preparation. J. Pharm. Sci. 58, 1114, 1969
[2] J. Panyam, V. Lathasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue.,Advanced Drug Delivery Reviews,55,329-347, 2003
[3] S. M. Moghimi, A. C. Hunter, J. C. Murry, Long-circnlating and target specific nanoparticles: theory to practice, Pharmacol. Rev. 53(2), 283-318, 2001
[4] R. langer, where a Pill won’t Reach, scientific American, 50-56, 2003
[5] S. Barbault-Foucher, R. Gref, P. Russo, J. Guechot, A. Bochot, Design of poly-ε-caprolactone nanoparspheres coated with bioadhesive hyaluronic acid for ocular delivery. J. Control. Rel., 83, 365-375, 2002
[6] D.H. Lewis, Controlled Release of Bioactive Agents from Lactide / Glycolide polymers. In: M. Chain., R. Langer, Biodegradable polymers as Drug Delivery Systems, Marcol Dekker, Inc., New York, 1990, 1-45
[7] M.F. Zambaux, F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie, M.J. Alonso, P. Labrude, C. Vigneron, Influence of experimental parameters on the characteristics of poly( lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Rel., 50, 31-40, 1998
[8] Y. Xu, Y. Du, Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles, International Journal Pharmaceutics, 250, 215~226, 2003
[9] G. Fontana, M. Licciardi, S. Mansueto, D. Schillaci, G. Giammona, Amoxicillin-loaded polyethylcyano -acrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptakrneete. Biomaterials, 22, 2857-2865, 2001
[10] M. Leroueil-Le Verger, L. Fluiger, Y. Kim, M. Hoffman, P. Maincent, Preparation and characterization of nanoparticles containing an antihypertensive agent, European journal of pharmaceutics and biopharmaceutics, 46, 137-143, 1998
[11] J.C. Leroux, E. Allemann, E. Doelker, R. Gurny, New approach for the preparation of nanoparticles by an emulsification-diffusion method, European journal of pharmaceutics and biopharmaceutics, 41, 14-18, 1995
[12] T. Gorner, R. Gref, D. Michenot, F. Sommer, M.N. Tran, E. Dellacherie, Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. Journal of Controlled Release 57, 259–268, 1999
[13] S.-W. Choi, H. -Y. Kwon, W. –S. Kim, J. –H. Kim, Thermodynamic parameters on poly(D,L-lactide-co-glycolide) particle size in emulsification-diffusion process, Colloids And Surfaces A, 201, 283-289, 2002
[14] L. Piao, Z. Dai, M. Deng, X. Chen, X. Jing, Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst, Polymer, 44, 2025-2031, 2003
[15] C. Wu, T. F. Jim, Z. Gan, Y. Zhao, S. Wang, A heterogeneous catalytic kinetics for enzymatic biodegradation of poly(ε-caprolactone) nanoparticles in aqueous solution, Polymer, 41, 3593-3597, 2000
[16] L. Zhanga, Y. Hu, X. Jiang, C. Yang, W. Lu, Y. H. Yang, Camptothecin derivative-loaded poly(caprolactone -co-lactide)-b -PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice, Journal of controlled release, 96, 135-148, 2004
[17] L. Illum, Chitosan and its use as a pharmaceutical excipient, Pharm. Res., 15 (9), 1326-1331, 1998
[18] K. A. Janes, M. P. Fresneau, A. MaraZuela, A. Fabra, M. J. Alonso, Chitosan nanoparticle as delivery system for Doxorubicin, Journal of controlled release, 73, 255-267,2001
[19]A. Vila, A. Sanchez, M. Tobio, P. Calvo, M.J. Alonso, Design of biodegradable particle for protein delivery, Journal of controlled release, 78. 15-24. 2002
[20] H.-J. Jeon, Y. Jeong, M. -K. Jang , Y. -H. Park , J. –W. Nah, Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics, International journal of pharmaceutics, 207, 99-108, 2000
[21] Y. N. Konan, R. Cerny, J. Favet, M. Berton, R. Gurny, E. Allemann, Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxyphenyl)porphyrin-loaded nanoparticles for photodynamic therapy, European Journal of Pharmaceutics and Biopharmaceutics, 55, 115-124, 2003
[22] C. Perez , A. Sanchez , D. Putnam , D. Ting , R. Langer , M.J. Alonso, Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA, Journal of controlled release, 75, 211-224, 2001
[23] M. N. V. Ravi Kumar, U. Bakowsky, C. M. Lehr, Preparation and characterization of cationic PLGA nanospheres as DNA carriers, Biomaterials, 25, 1771-1777, 2004
[24] V. Labhasetwar, C. Song, W Humphrey, R. Shebuski, R. J. Levy, Arterial uptake of biodegradable nanoparticles: effect of surface modifications, J. Pharm. Sci. 87, 1229-1234, 1998
[25] B. J. Lestini, S. M. Sagnella, Z. Xu, M. S. Shive, N. J. Richter, J. Jayaseharan, A. J. Case, K. K.-Marchant, J. M. Anderson, R. E. Marchant, Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery, Journal controlled release, 78, 235-247, 2002
[26] M. Tobio, R Gref, A. Sanchez, R. Langer, and M.J. Alonso, Stealth PLA-PEG nanoparticles as Protein Carriers for Nasal Administration, Pharmaceutical Research, Vol. 15, 2, 270-275, 1998
[27] S. Faraasen, J. Voros, G. Csucs, M. Textor, H. P. Merkle, and E. Walter, Ligand –Specific Targeting of Microspheres to Phagocytes by Surface Modification with Poly(L-Lysine)-Grafted Ply(Ethylene Glycol) Conjugate, Pharmaceutical Research, Vol. 20, 2, 237-246, 2003
[28] T.-W. Chung, D. -Z. Liu, S. –Y. Wang, S. –S. Wang, Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale, Biomaterials, 24, 4655-4661,2003
[29] T. –W. Chunga, Y. –F. Luc, S. –S. Wangc, Y. –S. Lin, S. –H. Chuc, Growth of human endothelial cells on photochemically grafted Gly–Arg–Gly–Asp (GRGD) chitosans, Biomaterials, 23, 4803-4809, 2002
[30] N.P. Desai, and J. Hubbell, Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces, J. Biomed. Mater. Res., 25, 829-843, 1991
[31] G. Fontana, M. Licciardi, S. Mansueto, D. Schillaci, G. Giammona, Amoxicillin-loaded polyethylcyano -acrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials, 22, 2857-2865, 2001
[32] T. Govender, T. Riley, T. Ehtezazi, M. C. Garnett, S. Stolnik, L. Illum, Stanley S. Davis, Defining the drug incorporation properties of PLA–PEG nanoparticles, International journal of pharmaceutics, 199, 95-110, 2000
[33] Y.-Y. Huang, T. -W. Chung, T.-W. Tzeng, A method using biodegradable polylactides:polyethylene glycol for drug release with reduced initial burst, International journal of pharmaceutics, 182, 93-100, 1999
[34] Y. Xu, Y. Du, Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles, International journal of pharmaceutics, 250, 215-226, 2003
[35] T. Govender, S. Stolnik, M. C. Garnett, L. Illum, Stanley S. Davis, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug, Journal of controlled release, 57, 171-185, 1999
[36] J. Panyam, S. K. Sahoo, S. Prabha, T. Bargar, V. Labhasetwar, Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles, International journal of pharmaceutics, 262, 1-11, 2003

[37] J. S. Chawla, M. M. Amiji, Biodegradable poly(o-caprolactone) nanoparticles for tumor targeted delivery of tamoxifen, International journal of pharmaceutics, 249, 127-138, 2002
[38] M.T. Peracchia , E. Fattal , D. Desmaele , M. Besnard , J.P. Noel , J.M. Gomis , M. Appel , J. d’Angelo , P. Couvreur, Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting, Journal of Controlled Release, 60, 121–128, 1999
[39] R. Gref, M. Lu¨ck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, R.H. Mu¨ ller, ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B: Biointerfaces, 18, 301–313, 2000
[40] P. Chenevier, B. Delord, J. Ame´de´e, R. Bareille, F. Ichas, D. Roux, RGD-functionalized spherulitesk as targeted vectors captured by adherent cultured cells, Biochimica et Biophysica Acta, 1593, 17– 27, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 31. 莊世滋,2001〈展示與文物保存環境之研究-以「古埃及的今生與來世特展」為例〉,《博物館學季刊》,15卷3期,p79-92。
2. 29. 張豐吉,1986,<紙質文物的劣化>,《故宮學術季刊》,4卷3期,p59-66。
3. 29. 張豐吉,1986,<紙質文物的劣化>,《故宮學術季刊》,4卷3期,p59-66。
4. 21. 岩素芬,2002,〈檔案保存概論〉,《檔案季刊》,2002年3月,p69-77。
5. 21. 岩素芬,2002,〈檔案保存概論〉,《檔案季刊》,2002年3月,p69-77。
6. 16. 李鴻麟、張上鎮、王國財,1990,〈國畫用色料之耐光性〉,《林產工業》,9卷4期,p77-87。
7. 16. 李鴻麟、張上鎮、王國財,1990,〈國畫用色料之耐光性〉,《林產工業》,9卷4期,p77-87。
8. 31. 莊世滋,2001〈展示與文物保存環境之研究-以「古埃及的今生與來世特展」為例〉,《博物館學季刊》,15卷3期,p79-92。
9. 35. 陳仁怡,1996,<紙的保存>,《長春棉紙基金雜誌》,85年4月,8-11頁。
10. 35. 陳仁怡,1996,<紙的保存>,《長春棉紙基金雜誌》,85年4月,8-11頁。
11. 36. 陳忠輝,1997<印刷紙張持久保存課題之探討>《印刷科技》,14卷2期,p60-68。
12. 36. 陳忠輝,1997<印刷紙張持久保存課題之探討>《印刷科技》,14卷2期,p60-68。
13. 45. 劉春銀,1998,〈圖書館館藏資料酸化劣化問題及其保存對策之探討〉,《國家圖書館館刊》,87年第2期。
14. 45. 劉春銀,1998,〈圖書館館藏資料酸化劣化問題及其保存對策之探討〉,《國家圖書館館刊》,87年第2期。