跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴姻足
研究生(外文):Yin-Tzu Lai
論文名稱:以固定化綠膿桿菌球移除溶液中之重金屬(Pb2+)
論文名稱(外文):REMOVAL OF HEAVY METAL (Pb2+) FROM SOLUTIONS BY IMMOBILIZED PSEUDOMONAS AERUGINOSA PU21
指導教授:林春強林春強引用關係
指導教授(外文):Chuen-Chang Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:121
中文關鍵詞:再生生物吸附固定化綠膿桿菌球幾丁聚醣
外文關鍵詞:regenerationbiosorptionimmobilized Pseudomonas aeruginosa PU21 beadchitosanlead
相關次數:
  • 被引用被引用:8
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
處理受重金屬物染之水源方法為物理或化學與生物吸附技術等方法,就成本效益而言,生物吸附法會比其他方法更具優勢,因此本研究利用生物吸附技術來整治受重金屬污染之水源;而本論文包括:(一)固定化綠膿桿菌球吸附重金屬(Pb2+)試驗:於18%Alginate中加入不同百分比之chitosan與聚合物PEG(polyethylene glycol)來進行交聯(交聯劑:不同濃度之Epichlorohydin)後以增加其機械強度,其結果發現以0.554M Epichlorohydin進行交聯1.5%chitosan+0.5%Polethylene glycol +18%Alginate之小顆粒(3~3.5mm)所吸附重金屬量與機械強度為較佳,另外同時加入綠膿桿菌(Pseudomonas aeruginosa PU21)以提高其對重金屬之吸附能力,結果顯示加入1%(w/w) Pseudomonas aeruginosa PU21之後吸附效果提升最多,而吸附量也會隨溫度增加而增加,其最適吸附條件為pH=5與轉速400 rpm;並測量其物化特性(DMA、含水率、密度儀、SEM與BET等);(二)固定化綠膿桿菌球脫附試驗:將已吸附重金屬(Pb 2+)之固定化綠膿桿菌,以0.1M HCl進行脫附試驗,結果發現脫附率可達87%,脫附與吸附次數達5次仍約有60%之吸附效率,由脫附效果可發現bead再生可能性甚高,符合經濟效益;(三)吸附模式、動力學模式、熱力學性質與質傳模式之探討:由吸附模式可得知,此實驗較符合Langmuir isothermal adsorption;由動力學模式可得知為一級反應;由熱力學性質可得知本試驗是屬於自發性的反應;最後以質傳模式來找出固定化綠膿桿菌球吸附重金屬(Pb2+)之有效擴散係數,即可嘗試利用這質傳模式來預測實際吸附狀況。
Waste water containing heavy metal are treated by physical method, chemical method, biosorption process, etc. . The biosorption process is better than other methods according to cost consideration. Therefore, the biosorption process for removal of heavy metal(Pb2+) from solutions is chosen in this study. Immobilized Pseudomonas aeruginosa PU21 bead was used as adsorbent. Different concentrations of chitosan and polymer (PEG) were added to alginate to proceed chemical modification with different concentration of Epichlorohydin (ECH) and increase mechanical strength of the bead. The results show that small immobilized bead (3 – 3.5 mm) with 1.5% chitosan + 0.5% PEG + 18% alginate cross-linked by 0.554M ECH had better heavy metal(Pb2+)adsorption efficiency and mechanical strength, when the optimum adsorption conditions (pH = 5 and rpm = 400) were utilized. Different amounts of P. aeruginosa PU21 were added to enhance heavy metal(Pb2+)adsorption. The results reveal that the heavy metal(Pb2+)adsorption capicity increased significantly with the addition of 1%(w/w) P. aeruginosa PU21. Elevation of temperature led to increase in heavy metal(Pb2+)adsorption. The immobilized P. aeruginosa PU21 beads adsorbing heavy metal(Pb2+)were regenerated by 0.1 M HCl solutions to reuse the immobilized P. aeruginosa PU21 beads. The results show that the desorption efficiency was up to 87% and the adsorption efficiency was about 60% after five repeated adsorption and desorption cycles. The result suggests the reusability of immobilized beads. The adsorption data were described by the Langmuir adsorption model with better accuracy. The kinetic analysis shows that the adsorption of Pb2+ was the first order reaction. The thermodynamic property was determined, showing that biosorption of Pb2+ was a spontaneous reaction. Finally, simulation with the mass transfer model determined the effective diffusivity of heavy metal(Pb2+)adsorption by immobilized P. aeruginosa PU21 bead.
中文摘要---------------------------------------------------------------------------------
英文摘要---------------------------------------------------------------------------------
致謝--------------------------------------------------------------------------------------- Ⅰ
II

目錄--------------------------------------------------------------------------------------- Ⅳ
表目錄------------------------------------------------------------------------------------ Ⅶ
圖目錄------------------------------------------------------------------------------------ IX
第一章 緒論---------------------------------------------------------------------------- 1
第二章 背景資料與文獻回顧------------------------------------------------------- 3
2.1 毒性物質(重金屬)對於環境、生物與人體的危害--------------------------- 3
2.1.1鉛的背景資料----------------------------------------------------------------- 3
2.1.2幾丁聚醣的來源簡介---------------------------------------------------------- 4
2.2固定化綠膿桿菌球吸附重金屬(Pb2+)------------------------------------------ 6
2.2.1綠膿桿菌(Pseudomonas aeruginosa PU21)對Pb2+之吸附能力-----
2.2.2固定化細胞之定義------------------------------------------------------------- 6
8
2.2.3 Pseudomonas aeruginosa PU21固定化之優點-------------------------- 8
2.3 Pseudomonas aeruginosa PU21固定化時添加高分子以摻混與交聯來強化其機械強度------------------------------------------------------------------
12
2.4固定化綠膿桿菌球吸附重金屬(Pb2+)之吸附模式、動力學與熱力學性質探討------------------------------------------------------------------------
16
第三章 研究方法---------------------------------------------------------------------- 17
3.1實驗設備與藥品------------------------------------------------------------------- 18
3.1.1實驗材料----------------------------------------------------------------------- 18
3.1.2實驗分析設備----------------------------------------------------------------- 19
3.2實驗步驟---------------------------------------------------------------------------- 22
3.2.1幾丁聚醣分子量之測定------------------------------------------------------------ 22
3.2.2固定化綠膿桿菌球吸附重金屬(Pb2+)試驗-----------------------------------
3.2.2-1 Pseudomonas aeruginosa PU21培養---------------------------------------- 23
23
3.2.2-2固定化綠膿桿菌球吸附重金屬(Pb2+)試驗------------------------ 24
3.2.3固定化綠膿桿菌球脫附試驗與吸脫附效率試驗------------------------- 26
3.2.3-1固定化綠膿桿菌球之脫附試驗---------------------------------------- 26
3.2.3-2固定化綠膿桿菌球之吸脫附效率試驗-------------------------------- 26
3.2.4 吸附模式、動力學模式、熱力學性質與質傳模式之探討------------- 27
3.2.4-1吸附模式之探討--------------------------------------------------------- 27
3.2.4-2動力學模式探討與熱力學性質探討---------------------------------
3.2.4-3質傳模式探討----------------------------------------------------------- 29
32
第四章 結果與討論------------------------------------------------------------------- 34
4.1固定化綠膿桿菌球吸附重金屬(Pb2+)試驗--------------------------------- 34
4.1.1 Pseudomonas aeruginosa PU21培養-------------------------------------- 34
4.1.1-1 Pseudomonas aeruginosa PU21之生長曲線------------------------ 34
4.2.1-2 Pseudomonas aeruginosa PU21之最適培養pH值試驗---------- 34
4.2綠膿桿菌球固定化---------------------------------------------------------------- 37
4.2.1幾丁聚醣(chitosan)分子量之測定---------------------------------------- 37
4.2.2固定化未加菌球與已加菌(Pseudomonas aeruginosa PU21)球吸附重金屬之平衡時間試驗--------------------------------------------------
37
4.2.3固定化綠膿桿菌(Pseudomonas aeruginosa PU21)球吸附重金屬(Pb2+)試驗--------------------------------------------------------------------
38
4.2.3-1不同濃度chitosan+0.5%PEG+18%Alg以blend方式製備未加菌球與其吸附重金屬(Pb2+)試驗------------------------------------
38
4.2.3-2 不同濃度chitosan+0.5%PEG+18%Alg以交聯方式製備未加菌球與其吸附重金屬(Pb2+)試驗------------------------------------
40
4.2.3-3加入不同克數綠膿桿菌固定化菌球與其吸附重金屬(Pb2+)試驗--------------------------------------------------------------------
42
4.2.3-4不同濃度chitosan+0.5%PEG+18%Alg以交聯方式製備綠膿桿菌球與其吸附重金屬(Pb2+)試驗------------------------------------
4.2.3-5單體材料之吸附試驗---------------------------------------------------
42
43
4.2.4 固定化綠膿桿菌球脫附試驗與吸脫附效率試驗---------------------- 54
4.2.5 動態機械分析、含水率與密度儀之分析--------------------------------- 57
4.2.5-1 chitosan+0.5%PEG+18%Alg以不同濃度ECH來交聯製備加
菌之bead與其動態機械分析------------------------------------------
57
4.2.5-2 以不同濃度chitosan+0.5%PEG+18%Alg以blend方式製備加菌之bead與其動態機械分析----------------------------------------
4.2.5-3 含水率與密度之分析--------------------------------------------------
4.2.6 chitosan、ECH與PEG自由交聯結構圖-----------------------------------
57
58
62
4.2.7型態學分析-------------------------------------------------------------------- 64
4.2.8 孔洞之測定------------------------------------------------------------------- 69
4.3 吸附模式探討--------------------------------------------------------------------- 70
4.3.1 Langmuir adsorption equation與Freundlich isothermal equation探討--------------------------------------------------------------------------------
70
4.3.1-1 Langmuir adsorption equation探討----------------------------------- 70
4.3.1-2 Freundlich isothermal equation探討---------------------------------- 70
4.3.2動力學模式探討與熱力學性質探討--------------------------------------
4.3.2-1 動力學模式探討--------------------------------------------------------
4.3.2-2 熱力學性質探討--------------------------------------------------------
4.3.3 質傳模式探討---------------------------------------------------------------- 73
73
73
79
第五章 結論---------------------------------------------------------------------------- 81
參考文獻---------------------------------------------------------------------------------
附錄---------------------------------------------------------------------------------------
附錄A bead吸附重金屬------------------------------------------------------------ 83
88
89
附錄B 吸附模式計算過程----------------------------------------------------------- 92
附錄C 動力學計算過程--------------------------------------------------------------
附錄D 熱力學計算過程-------------------------------------------------------------- 95
101
附錄E ICP檢量線-------------------------------------------------------------------
附錄F 密度儀之原理-----------------------------------------------------------------
附錄G BET數據表------------------------------------------------------------------
附錄H 質傳係數( )之數據--------------------------------------------------
附錄I 田口實驗設計法之操作----------------------------------------------------
自述---------------------------------------------------------------------------------------




















104
106
109

117
119
121
表目錄
表2.1.2幾丁聚醣之化學性質--------------------------------------------------------------
幾丁聚醣之物理性質--------------------------------------------------------------
表4.1不同chitosan濃度之相對黏度、比黏度、還原年度與內生性黏度之結
果--------------------------------------------------------------------------------------- 5
5

46
表4.2已交聯且未加菌之bead(3~3.5mm)和bead(4~4.5mm)在rpm=400與20℃下,測量吸附重金屬量,達飽和平衡均為40min----------------------
46
表4.3已交聯且已加菌之bead(3~3.5mm)和bead(4~4.5mm)在rpm=400與20℃下,測量吸附重金屬量,達飽和平衡均為15min----------------------
46
表4.4利用L18直角表,分別在未交聯且未加菌之bead(20℃、30℃、40℃及
50℃)下反應-----------------------------------------------------------------------------
47
表4.5利用L18直角表,分別在已交聯且未加菌bead(20℃、30℃、40℃及
50℃)下反應---------------------------------------------------------------------------
49
表4.6利用L18直角表,分別在已交聯且已加菌[1%(w/w)]之bead(20℃、
30℃、40℃、50℃)下反應-------------------------------------------------------
表4.7 單體材料之吸附試驗---------------------------------------------------------------
51
53
表4.8機械強度(N/mm)與吸附重金屬Pb2+(mg Pb2+/g bead)決定ECH(M)
交聯關係表----------------------------------------------------------------------------
表4.9 機械強度(N/mm)與吸(脫)附重金屬次數之關係表-------------------------
59
59
表4.10 Langmuir adsorption equation parameters for adsorption of Pb2+ ----------- 71
表4.11 Freundlich isothermal equation parameters for adsorption of Pb2+-----------
表4.12反應速率常數與熱力學性質數據表---------------------------------------------
表4.13 The thermodynamic and rate constant parameters ------------------------------
表4.14 The mass transport of Cb,expt parameters------------------------------------------
表4.15 The mass transport of parameters-------------------------------------------------- 72
75
77
80
80
表A1 bead之製作最適化條件與吸附重金屬(Pb2+)之最適化條件------------- 90
表B1 Langmuir adsorption equation & Freundlich isothermal equation整理表-- 93
表B2 Langmuir & Freundlich isothermal equation整理表---------------------------
表C1 10g固定化綠膿桿菌小顆粒[(1.5%chitosan、0.5%PEG與18%Alg,各取
33g)+1g P. aeruginosa PU21]置入不同初始Pb2+濃度之50ml溶液中進行
吸附,其bead溫度與時間及吸附量關係-----------------------------------------
表C2 First-order kinetic model與Second-order kinetic model{以10g固化綠膿
桿菌小顆粒[(1.5%chitosan、0.5%PEG與18%Alg,各取33g)+1g
P. aeruginosa PU21]置入不同初始Pb2+濃度50ml溶液中進行吸附}-------
表C3 First-order kinetic model與Second-order kinetic mode之線性回歸線-------
表D1熱力學性質{以10g固化綠膿桿菌小顆粒[(1.5%chitosan、0.5%PEG與18%Alg,各取33g)+1g P. aeruginosa PU21]置入不同初始Pb2+濃度50ml溶液中進行吸附}---------------------------------------------------------------------
表D2 Thermodynamic properties、Rate constant and active energy------------------- 94


96


98
100


102
102


















圖目錄
圖2.1細胞固定化之方法--------------------------------------------------------------- 10
圖2.2褐藻酸之分子結構--------------------------------------------------------------- 11
圖2.3 褐藻酸鈉(Sodium Alginate)結構式----------------------------------------- 11
圖2.4褐藻膠鈣之分子結構------------------------------------------------------------ 11
圖2.5 chitosan 結構圖------------------------------------------------------------------ 15
圖2.6 PEG結構圖----------------------------------------------------------------------- 15
圖2.7幾丁聚醣與鉛離子螯合示意圖------------------------------------------------
圖3.1 Langmuir 之恆溫曲線-----------------------------------------------------------
圖3.2 Freundlich不同n值之恆溫吸附曲線----------------------------------------- 15
27
28
圖4.1 Pseudomonas aeruginosa PU21生長曲線試驗------------------------------ 35
圖4.2 Pseudomonas aeruginosa PU21最適培養pH値試驗-----------------------
圖4.3 Pseudomonas aeruginosa PU21在不同pH培養下生長情形-------------- 35
36
圖4.4幾丁聚醣在HCl溶液中之還原黏度與chitosan濃度之關係圖----------- 45
圖4.5吸附Pb2+之吸附平衡曲線------------------------------------------------------- 45
圖4.6未交聯且未加菌之bead在20℃吸附Pb2+之各條件關係圖--------------- 47
圖4.7未交聯且未加菌之bead在30℃吸附Pb2+之各條件關係圖--------------- 48
圖4.8未交聯且未加菌之bead在40℃吸附Pb2+之各條件關係圖--------------- 48
圖4.9未交聯且未加菌之bead在50℃吸附Pb2+之各條件關係圖--------------- 48
圖4.10已交聯且未加菌之bead在20℃吸附Pb2+之各條件關係圖------------- 49
圖4.11已交聯且未加菌之bead在30℃吸附Pb2+之各條件關係圖------------- 50
圖4.12已交聯且未加菌之bead在40℃吸附Pb2+之各條件關係圖------------- 50
圖4.13已交聯且未加菌之bead在50℃吸附Pb2+之各條件關係圖------------- 50
圖4.14加入不同克數綠膿桿菌固定化菌球吸附之重金屬(Pb2+)溶液--------- 51
圖4.15已交聯且已加菌[1%(w/w)]之bead在20℃吸附Pb2+之各條件關係- 52
圖4.16已交聯且已加菌[1%(w/w)]之bead在30℃吸附Pb2+之各條件關係圖 52
圖4.17已交聯且已加菌[1%(w/w)]之bead在40℃吸附Pb2+之各條件關係圖
圖4.18已交聯且已加菌[1%(w/w)]之bead在50℃吸附Pb2+之各條件關係圖 52
52
圖4.19不同溫度(℃)下, bead(1.5%chitosan+0.5%PEG+18%alg,小顆粒)
吸附Pb2+之去除率(%)------------------------------------------------------
53
圖4.20在20℃下進行固定化綠膿桿菌球在重金屬溶液(50ml,73.4mg/l
Pb2+)之脫附平衡時間試驗--------------------------------------------------
55
圖4.21 在不同溫度(20、30、40與50℃)下進行固定化綠膿桿菌球在重
金屬溶液(50ml,73.4mg/l Pb2+)之脫附試驗---------------------------
圖4.22固定化綠膿桿菌球在重金屬溶液(50ml,73.4mg/l Pb2+)中進行吸附試驗15min之吸附效率(%)----------------------------------------------
圖4.23固定化綠膿桿菌球在0.1M HCl溶液中進行脫附試驗脫附效率(%) --
55

56
56
圖4.24固定化濕bead(未交聯)與(0.554M ECH交聯)以動態機械分析
試驗--------------------------------------------------------------------------------
60
圖4.25固定化bead 未交聯與已交聯之含水率(%)------------------------------ 60
圖4.26未交聯且已加菌與已交聯且已加菌在不同配比下之密度差異性比較----------------------------------------------------------------------------------
圖4.27 ECH、chitosan與PEG自由開環交聯過程--------------------------------
61
63
圖4.28未加菌小顆粒掃描式電子顯微照片----------------------------------------- 65
圖4.29未交聯且未加菌(1.5%PEG+0.5%PEG+18%Alg)小顆粒掃描式電
子顯照片------------------------------------------------------------------------
66
圖4.30已交聯且未加菌(1.5%PEG+0.5%PEG+18%Alg)小顆粒掃描式電
子顯照片------------------------------------------------------------------------
67
圖4.31已交聯且已加菌(1.5%PEG+0.5%PEG+18%Alg)小顆粒掃描式電
子顯微照片--------------------------------------------------------------------
68
圖4.32 Adsorption isotherms of Pb2+ on bead,linearized according to the Langmuir equation ----------------------------------------------------------------
71
圖4.33 sorption isotherms of Pb2+ on bead,linearized according to the
Freundlich isothermal equation----------------------------------------------------
72
圖4.34 when T=20℃,sorption isotherms of Pb2+ on bead,linearized according to the First-order Kinetic model ----------------------------------------------
76
圖4.35 when T=20℃,sorption isotherms of Pb2+ on bead,linearized according to the Second-order Kinetic model---------------------------------------------
76
圖4.36 sorption isotherms of Pb2+ on bead,linearized according to the thermodynamics equation -----------------------------------------------------
77
圖4.37 sorption isotherms of Pb2+ on bead,linearized according to the thermodynamics equation-------------------------------------------------------
78
圖4.38 AccPyc-1330密度量測儀構造圖--------------------------------------------- 108
參考文獻

1.An, H. K. and Kin, D. S., ”Crab Shell for The Removal of Heavy Metals From Aqueous Solution, ” Water Research, Vol. 35, No. 15, pp. 3551-3556 (2001).
2.Becker, T., Schlaak, M., and Strasdeit, H., “Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives, ” Reactive & Functional Polymer, 44, pp. 289-298 (2000).
3.Burke, A., Yilmaz, E., Hasirci, N., and Yilmaz, O., “Iron(III) ion removal from solution through adsorption on chitosan, ” Journal of Applied Polymer Science, Vol. 84, pp. 1185-1192, (2002).
4.Chang, J. S., and Hong, J., “Inactivated cells of Pseudomonas aeruginosa PU21(Rip64), ” Biotechnology and Bioengineering, Vol. 44, pp. 999-1006 (1994).
5.Chang, J. S., and Huang, J. C., “Selective Adsorption/Recovery of Pb,Cu,and Cd with Multiple Fixed Beds Containing Immobilized Bacterial Biomass, ” Biotechnol Progress, 14, pp.735-741 (1998).
6.Chang, J. S., Law R., and Chang C. C., “Biosorption of Lead, Copper and Cadmium By Biomass of Pseudomonas aeruginosa PU21, ” Water Research, Vol. 31, No.7, pp. 1651-1658 (1997).
7.Chiou, M.S., and Li, H.Y., “Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads, ” Chemosphere 50, pp. 1095-1105 (2003).
8.Cho, Y. W., Han, S. S., and Ko, S. W., “PVA containing chito-oligosaccharide side chain, ” Polymer 41, pp. 2033-2039 (2000).
9.Favre, E., Leonard, M., Laurent, A., and Dellacherie, E., “Diffusion of polyethyleneglycols in calcium alginate hydrogels, ” Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol.194, pp.197-206 (2001).
10.Gallifuoco, A., Ercole, L. D., Alfani, F., Cantarella, M., Spagna, G., and Pifferi, P. G., “On the use of chitosan-immobilized β-glucosidase in wine-making:kinetics and enzyme inhibition, ” Process Biochemistry, Vol. 33, No.2, pp. 163-168 (1998).
11.Guibal, E., Charrier, M. J., Saucedo, I., and Cloirec, P. L., “Enhancement of metal ion sorption performances of chitosan:effect of the structure on the diffusion properties, ” American Chemical Society, Vol.11, pp.591-598 (1995).
12. Gyliene, O., Rekertas, R., and Salkauskas, M., “Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells, ” Water Research, 36, pp. 4128-4126 (2002).
13.http://liuyifeng.nease.net/table/Lead.htm
14.http://www.sbu.ac.uk/water/hyalg.html
15. Hu, M. Z. C., and Reeves, M., “Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix, ” Biotechnol Progress, 13, pp. 60-70 (1997).
16.Inoue K., Yoshizuka, K., and Ohto, K., “Adsorptive separation of some metal ions by copmlexing agent types of chemically modified chitosan, ” Analyica Chimica Acta, 388, pp. 209-218 (1999).
17.Jiang, W. H., and Han, S. J., “The interactions of chitosan-poly(ethylene glycol) in the presence of added salt in water:viscosity effect, ” European Polymer Journal, 35, pp. 2079-2085 (1999).
18.Jianlong, W., Xinmin, Z., Ding, D., and Ding, Z., “Bioadsorption of lead(II) from aqueous solution by fungal biomass of Aspergillus niger, ” Journal of Biotechnology, 87, pp. 273-277 (2001).
19.Juang, R. S., and Shao, H. J., “A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan, ” Water Research, 36, pp. 2999-3008 (2002).
20.Juang, R. S., Wu, F. C., and Tseng R. L., “Adsorption removal of copper(II) using chitosan from simulated rinse solutions containing chelating agents, ” Water Research, Vol.33, No. 10, pp. 2403-2409 (1999).
21.Kapoor, A., and Viraraghavan, T., “Biosorption of heavy metals on aspergillus niger:effect of pretreatment, ” Bioresource Technology, Vol.63, pp.109-113 (1998).
22.Liu, X. D., Tokura, S., Haruki, M., Nishi, N., and Sakairi, N., “Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions, ” Carbohydrate Polymers, 49, pp. 103-108 (2002).
23.Macaskie, L. E., and Dean, A. C. R., “Heavy metal accumulation by immobilized cells of a citrobacter sp., ” Biotechnology Letters, Vol. 6, No. 2, pp. 71-76 (1984).
24.Mi, F. L., Shyu, S. S., Chen, C. T., and Lai, J.Y., “Adsorption of indomethacin onto chemically modified chitosan beads, ” polymer, 43, pp. 757-765 (2002).
25.Ng, J. C. Y., Cheung, W. H., and Mckay, G., “Equillbrlum studies of the sorption of Cu(II) ions onto chitosan, ” Received March, 255, pp. 64-74 (2002).
26.Nourbakhsh, M. N., Kilicarslan, S., Iihan, S., and Ozdag, H., “Biosorption of Cr6+, Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp., ” Chemical Engineering Journal, 85, pp. 351-355 (2002).
27.Pozzo, A. D., Vanini, L. M., Fagnoni, M., Guerrini, M., and Muzzarelli, R.A.A., “ Preparation and characterization of poly(ethylence glycol)crosslinked reacetylated chitosans, ” Carbohydrate Polymers, 42, pp. 201-206 (2000).
28.Qin, Y., “The chelating properties of chitosan fibers, ” Journal of Applied Polymer Science, Vol. 49, pp. 727-731 (1993).
29.Shi, Q. H., Tian, Y., Dong, X. Y., Bai, S., and Sun, Y., “Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption, ” Biochemical Engineering Jourmal, 16, pp. 317-322 (2003).
30.Shu, X. Z., and Zhu, K. J., “Controlled drug release properties of ionically cross-linked chitosan beads:the influence of anion structure, ” International Journal of Pharmaceutics, 233, pp. 217-225 (2002).
31.Simsek-Ege, F. A., Bond, G.. M., and Stringer, J., “Polyelectrolye Complex Formation Between Alginate and Chitosan as a Function of pH, ” Journal of Applied Polymer Science, Vol. 88,pp. 346-351 (2003).
32.Skountzou, P., Soupioni, M., Bekatorou, A., Kanellaki, M., and Koutinas, A. A., “Lead(II) uptake during baker’s yeast production by aerobic fermentation of molasses, ” Process Biochemistry, 38, pp. 1479-1482 (2003).
33.Uchiyama, H., Oguri, K., Yagi, O., and Kokufuta, E., “Trichloroethylene degradation by immobilized resting-cell of methylocystis sp. in a gas-solid bioreactor, ” Biotechnology letters, Vol.14, No.7, pp. 619-622 (1992) .
34.Wan Ngah, W.S., Endud, C.S., and Mayanar, R., “Removal of copper(II) ion from aqueous solution onto chitosan and cross-linked chitosan beads, ” Reactiv &Functional Polymers, 50, pp. 181-190 (2002).
35.Wei, Y. C., Hudson, S. M., Mayer, J. M., and Kaplan, D. L., “The crosslinking of Chitosan fibers,” Journal of Polymer Science:Part A:Polymer Chemistry, Vol. 30, pp. 2187-2193 (1992).
36.Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M., and Zhang, X. F., “Properties and biocompatibility of chitosan films modified by blending with PEG, ” Biomaterials 23, pp. 2641-2648 (2002).
37.丁中凱,萬腾州,袁又罡,「改良型褐藻膠鈣(Alg-PEG-PEI)擔體之污水處理效能評比研究」,國立雲林科技大學環境與安全工程技術研究所,PP. 7-11 (1998)。
38.王西華,王進琦,「微生物學實驗」,藝軒圖書,八月,(1993)。
39.江昭敏,「認識食品中有害重金屬」,食品資訊,十月,NO.154.,(1998)。
40.林宏龍,「受重金屬(鎘)污染之土壤復育研究」,碩士論文,雲林科技大學化學工程所 (2003)。
41.林漢鎮,陳健台,林曉青,林雅芬,「抗汞菌綠膿桿菌對不同重金屬生物吸附之研究及其開發微量金屬分析之應用」,第七屆生化工程研討會論文集,(2000)。
42.徐瑞堂,「以微生物去除水中重金屬」 ,環境工程會刊,第四卷,第一期,pp. 46-51 (1993)。
43.徐新興,糜福龍,「海洋資源與化工技術-幾丁質與幾丁聚醣在化工領域之應用」,化工資訊,第46卷,第3期 (1999)。
44.張家誠,「利用固定化綠膿桿菌去除水中重金屬鉛之研究」,碩士論文,逢甲大學化學工程所 (1996)。
45.張忠正,「以綠膿桿菌為重金屬生物吸附劑之效果評估」,碩士論文,逢甲大學化學工程所 (1996)。
46.張嘉修,「微生物技術在廢水處理之應用」,化工技術,第九卷,第二期 (2001)。
47.施昭銘,「幾丁聚醣與防霉抗菌材料之應用」,碩士論文,大葉大學食品工程學系(2001)。
48.莊仲揚,「幾丁聚醣於生醫產業上的應用」,化工資訊,四月,PP. 46-50 (2002)。
49.莊啟珠,「利用真菌菌絲生質體去除水中重金屬最佳處理方式之探討」,碩士論文,國立成功大學環工系(1993)。
50.陳美惠,莊淑惠,吳志律,「幾丁聚醣物化特性」,食品工業月刊,十月(1999)。
51.陳國誠,吳建一,「微生物固定化技術在廢水處理的應用」,工業污染防治,第68期(1998)。
52.陳榮彰,「芳香族結構化合物在高分子材料之補強研究」,碩士論文,國立台灣大學化學工程研究所 (2001)。
53.薛敬和,廖德章,楊寶旺,楊美惠,林敬二,「化工大辭典」,高立圖書公司(2000)。
54.顏棋鑫,「幾丁聚醣顆粒吸附有害重金屬之探討」,碩士論文,朝陽科技大學應用化學系 (2002)。
55.蘇遠志,「幾丁質與幾丁聚醣之機能及其有效利用」,第八屆生化工程研討會論文集,(2001)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top