跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏旭男
研究生(外文):Hsu-Nan Yen
論文名稱:全場光學三維量測技術於表面黏著電子封裝元件之檢測
論文名稱(外文):Full-field optical 3D measurement for the quality inspection of SMT electronics packaging
指導教授:蔡篤銘蔡篤銘引用關係
指導教授(外文):Du-Ming Tsai
學位類別:博士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:95
中文關鍵詞:三維量測錫膏體積球格陣列覆晶共平面檢測條紋投射相位移機器視覺
外文關鍵詞:3D measurementSolder pasteBall-Grid-ArrayFlip chipCoplanarity inspectionFringe projectionPhase shiftMachine vision
相關次數:
  • 被引用被引用:7
  • 點閱點閱:514
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:4
摘 要
全場光學三維量測技術於表面黏著電子封裝元件之檢測
在表面黏著電子封裝製程中,三維量測對元件品質檢測相當重要。基於X射線(X-ray)或雷射掃瞄(Laser scanning)方法的精密三維量測系統,不僅建置成本高,且系統校正耗時費力。本研究針對表面黏著電子封裝元件之品質檢測,發展一建置成本低、量測效益高之全場光學三維量測系統。
本系統是依據相位量測技術(Phase measuring technique)進行微小物體之三維量測。檢測步驟為由可程式控制光柵,如液晶顯示(LCD)穿透式面板或數位光學處理(DLP)反射式投射單元,產生正弦條紋圖案,並由共面白光照射,得到一具有正弦相位分佈的光柵;將此正弦光柵投射於待測物上,原本平行之正弦光柵將因物體表面形貌而變形;最後,經由計算在不同相位移時的變形正弦光柵影像,以得到待測物之表面高度值。由於運用可程式控制光柵為基礎的相位量測架構,使得本系統不僅可以精準地讓正弦光柵進行相位移,更可以迅速、彈性地因應所需量測精度及待測物大小,變換正弦條紋圖案的大小及條紋週期寬度。
經由標準一毫米塊規的量測驗證,本研究所發展之光學三維量測系統,其量測精度可達十微米。此外,由於採用全場量測方式,量測速度快,可在兩秒內完成一張640×480像素影像的量測。從錫膏(Solder paste)、球格陣列錫球(BGA solder ball)及覆晶凸塊(Flip-chip solder bump)的初步實驗,證明本系統在表面黏著電子封裝元件的品質檢測上有其功效。
Abstract
Full-field optical 3D measurement for the
quality inspection of SMT electronics packaging
Three-dimensional (3D) measurement is important for the quality inspection of SMT electronics packaging. In this study, a cost-effective machine vision system for precise and full-field 3D measurement is proposed. This system especially aims at the 3D measurement applications in SMT soldering inspection such as volume measurement of the solder paste, and coplanarity inspection of BGA solder balls and flip-chip solder bumps.
The proposed system is based on a phase measuring technique, in which the phase is efficiently and effectively shifted by a software-controlled grating using a liquid crystal display (LCD) panel or a digital light processing (DLP) projection unit. A sinusoidal fringe pattern is generated on the software-controlled grating, projected onto the object, and deformed in accordance with the object surface. The surface profile is then obtained from the evaluation of intensity images of the deformed fringe patterns in different phase shifts. The LCD- and DLP-based phase measuring schemes not only can shift the fringe pattern with accurate phase increments, but can also adaptively generate the fringe pattern with varying periods to accommodate the required resolution and size of an inspection object.
The measurement accuracy of the proposed system is in the micrometer range, which is demonstrated by a standard 1 mm gauge block of grade 0. The processing time of the proposed 3D measurement system for an image of 640×480 pixels is less than 2 seconds on a typical personal computer. Experimental results from solder pastes, BGA solder balls and Flip-chip solder bumps have shown the efficacy of the proposed system in the quality inspection of SMT electronics packaging.
中文摘要……………………………………………………………………Ⅱ
Abstract……………………………………………………………………Ⅲ
Acknowledgements…………………………………………………………Ⅴ
List of Figures……………………………………………………………Ⅷ
List of Tables………………………………………………………………XI
1.Introduction………………………………………………………………1
1.1 Introduction to the problem………………………………………1
1.2 Objective and main contributions…………………………………5
1.3 Organization of the dissertation…………………………………6
2. Literature Review……………………………………………………8
2.1 SMT soldering inspection……………………………………………8
2.1.1 Gray level image analysis………………………………………8
2.1.2 Tiered-color illumination………………………………………9
2.1.3 Structured light……………………………………………………10
2.1.4 Acoustic microscope………………………………………………11
2.1.5 Laser ultrasound……………………………………………………12
2.1.6 X-ray…………………………………………………………………12
2.1.7 Infrared imaging……………………………………………………13
2.1.8 Confocal microscope………………………………………………13
2.2 Optical 3D measurement methods……………………………………16
2.2.1 Time of flight………………………………………………………16
2.2.2 Optical focus………………………………………………………18
2.2.3 Stereoscopic image…………………………………………………19
2.2.4 Laser scanning………………………………………………………20
2.2.5 Moiré topology……………………………………………………22
2.2.6 Interferometry……………………………………………………22
2.2.7 Fringe projection…………………………………………………23
3. LCD-Based Phase Shifting 3D Measurement System………………26
3.1 ntroduction……………………………………………………………26
3.2 The principle of phase measuring method………………………27
3.3 The proposed 3D measurement system………………………………30
3.3.1 The LCD-based phase shifting technique………………………30
3.3.2 System implementation……………………………………………33
3.3.3 System calibration and measuring procedure…………………35
3.4 Experimental results…………………………………………………36
3.5 Measurement notes……………………………………………………34
4. Applications to Post-Printing Inspection………………………46
4.1 Introduction…………………………………………………………46
4.2 Volume measurement of solder pastes……………………………46
4.3 Coplanarity measurement of BGA solder balls…………………51
4.4 Summary………………………………………………………………58
5. Comparisons of 3D measurement between LCD- and DLP-based
phase shifting techniques.…………………………………………59
5.1 Basics of the DLP projection………………………………………60
5.2 The implementation of the DLP-based 3D measurement
system…………………………………………………………………61
5.3 Measurement capability of DLP-based phase shifting
techniques……………………………………………………………62
5.4 Comparisons of 3D surface profiles……………………………66
5.5 Comparisons of measured height values of a flip chip……75
5.6 Summary………………………………………………………………80
6. Conclusions……………………………………………………………81
References…………………………………………………………………83
Appendix……………………………………………………………………91
A Quantitative comparisons of various optical 3D measurement
methods…………………………………………………………………91
B Derivation of the relation between the surface height and the
phase difference……………………………………………………92
C Hypothesis test about the difference between the accuracy
means at point 5 measured with the LCD-based and the DLP-
based system……………………………………………………………94
References
1.S. C. Richard, “The complete solder paste printing processes,” Surface Mount Technology, 13, pp. 6-8, 1999.
2.K. Ho and A. Teng, “Survey on delamination of IC packages in electronic products,” 2000 International Symposium on Electronic Materials and Packaging, pp. 269 —273, 2000.
3.J. Pan, G. L. Tonkay, R. H. Storer, R. M. Sallade and D. J. Leandri, “Critical variables of solder paste stencil printing for micro-BGA and fine pitch QFP,” Proceedings of IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 94-101, 1999.
4.Danielsson, H., “Surface mount technology with fine pitch components,” Chapman & Hall, New York, 1995.
5.S. L. Bartlett, P. J. Besl, C. L. Cole, R. Jain, D. Mukherjee, and K. D. Skifstad, “Automatic solder joint inspection,” IEEE Trans. Pattern Anal. Mach. Intell. , 10, pp. 31-43, 1988.
6.A. Kashitani, N. Takanashi, and N. Tagawa, “A solder joint inspection system for surface mounted pin grid arrays,” International Conference on Industrial Electronics, Control, and Instrumentation, 3, pp. 1865-1870, 1993.
7.K. W. Ko and H. S. Cho, “Solder Joints Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method,” IEEE Transactions on Electronics Packaging Manufacturing, 10, pp. 93-103, 2000.
8.D.W. Capson and S. K. Eng, “A tiered-color illumination approach for machine inspection of solder joints,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, pp. 387 -393, 1988.
9.Y. Nakagawa, “Automatic visual inspection of solder joints on printed circuit boards.” Proceedings of SPIE, 336, pp.121-127, 1982.
10.Y. Nakagawa and T. Ninomiya, “Sturctured light method for inspection of solder joint and assembly robot vision system,” First Int. Symp. Robotics Res., Bretton Woods, NH, Aug. 28-Spet. 2, 1983.
11.Y. Nakagawa, Y. Hara, and M. Hashimoto, “Automatic visual inspection using digital image processing,” Hitachi Rev., 34, no.1, pp. 55-60. 1985.
12.H. Tsukahara, Y. Nishiyama, F. Takahashi, T. Fuse, M. Ando and T. Nishino, “High-speed 3D inspection system for solder bumps,” Proceedings of SPIE, 2597, pp. 168-177, Oct. 23-25, Bellingham, WA, USA, 1995.
13.P. Kim and S. Rhee, “Three-dimensional inspection of ball grid array using laser vision system,” IEEE Transactions on Electronics Packaging Manufacturing, 22, pp. 151-155, 1999.
14.T. Adams, “Acoustic micro imaging of flip chip interconnects,” III—Vs Rev., 8, no. 5, pp. 50—52, 1995.
15.J. E. Semmens et al., “Further investigation into the use of acoustic micro imaging for analyzing flip chip integrity and failure modes,” Proc. SPIE, pp. 165—169, 1997.
16.J. Kubota et al., “Imaging flaws in soldered joints of integrated circuits using an ultrasound electronic scanning technique,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 39, pp. 122—126, 1992.
17.S. Liu, D. Erdahl, I. C. Ume, A. Achari, and J. Gamalski, “A Novel Approach for Flip Chip Solder Joint Quality Inspection: Laser Ultrasound and Interferometric System,” IEEE Transactions on Components and Packaging Technologies, 24, no. 4, 2001
18.J. P. Monchalin, “Measurement of in-plane and out-of-plane ultrasonic displacements by optical heterodyne interferometry,” J. Nondestruct. Eval. vol. 8, no. 2, 1989.
19.S. Edward, “X-ray systems keep pace with SMT,” Test Meas. World, Feb. 1991.
20.C. G. Masi, “Future of solder-joint inspection,” Test Meas. World, July 1991.
21.Anon, “Microfocus X-rays for BGA/flip chip inspection,” European Semiconductor Design Production Assembly, 21, S61-S62, 1999.
22.S. Rooks and T. Sack, “X-ray inspection of flip chip attach using digital tomsynthesis,” Circuit World, 21, pp. 51-55, 1995.
23.C. Neubauer, S. Schroepfer and R. Hanke, “X-ray inspection of solder joints by planar computer tomography,” Proceedings of the IEEE/CPMT Intl. Electronics Manufacturing Technology Symposium, pp. 60-64, Sept. 12-14, 1994.
24.A. R. Kalukin, and V. Sankaran, “Three-dimensional visualization of multilayered assemblies using X-ray laminography,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A 43, pp. 361-666, 1997.
25.V. Sankaran, A. R. Kalukin, and R. P. Kraft, “Improvements to X-Ray Laminography for Automated Inspection of Solder Joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, 21, no. 2, pp. 148-154,1998.
26.R. Vanzetti, A. C. Traub, and J. S. Ele, “Hidden solder joint defects detected by laser infrared system,” in Proc. IPC 24th Annu. Meeting, pp.1-15, 1981.
27.R.Z. Liu, Y.Q. Shi, W.F. Kosonocky and F.P. Higgins, “Infrared solder joint inspection on surface mount printed circuit boards,” Proceedings of the 38th Midwest Symposium on Circuits and Systems, 1, pp. 145 -148, 1995.
28.M. Noguchi and S.K. Nayar, “Microscopic shape from focus using active illumination,” Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1, pp. 147-152, 1994.
29.Y. Matsuyama, T. Honda, H. Yamamura, H. Sasazawa, M. Nomoto, T. Ninomiya, A. Schick, L. Listl, P. Kollensperger, D. Spriegel, P. Mengel and R. Schneider, “Automated solder joint inspection system using optical 3-D image detection,” Proceedings 3rd IEEE Workshop on Applications of Computer Vision, pp. 116-122, 1996.
30.I. Moring, H. Ailisto, V. Koivunen, and R. Myllyla, “Active 3-D vision system for automatic model-based shape inspection,’’ Opt. Lasers Eng. 10, pp. 3-4 ,1989.
31.J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. Wallace, ‘‘Time of flight optical ranging system based on time correlated single photon counting,’’ Appl. Opt. 37, pp. 7298-7304, 1998.
32.R. Brodmann and W. Smilga, “Evaluation of a commercial microtopography sensor,” Proc. SPIE, 802, pp. 165-169, 1987.
33.H. J. Tiziani, M. Wegner and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Optical Engineering, 39, pp. 32-39, 2000.
34.W. Wester-Ebbinghaus, ‘‘Analytics in non-topographic photogrammetry,’’ ISPRS Cong., Com. V., Kyoto, 27, pp. 380-390, 1988.
35.Q. Yu, D. Zhang, Z. Lei and T. Quan, ‘‘Accurate measurement of 3D coordinate of an object with subpixel technique,’’ IEEE International Conference on Systems, Man, and Cybernetics, 1, pp. 484 -486, 1996.
36.Z. Ji and M.C. Leu, “Design of optical triangulation devices,” Optics and laser technology, 21, pp. 335-338, 1989.
37.D.J. Kim, W.S. Chang, S.K. Park, S.H. Baik and C.J. Kim, “A study on a 3-D profilemeter using dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light,” Proceedings of the IEEE Region 10 Conference, 2, pp. 1371-1374, 1999.
38.Z. Ji and M. C. Leu, ‘‘Design of optical triangulation devices,’’ Opt. Laser Technol. 21, pp. 335-338, 1989.
39.C. P. Keferstein and M. Marxer, ‘‘Testing bench for laser triangulation sensors,’’ Sens. Rev. 18, pp. 183-187, 1998.
40.M. Idesawa, ‘‘High-precision image position sensing methods suitable for 3-D measurement,’’ Opt. Lasers Eng. 10, pp. 3-4, 1989.
41.Keyence Technical Report on Sensors and Measuring Instruments, 1997.
42.H. Takasaki, ‘‘Moiré topography,’’ Appl. Opt. 9, pp. 1467-1472, 1970.
43.R. Harding and R. Tait, ‘‘Moiré techniques applied to automated inspection of machined parts,’’ in Proc. SME Vision ’86 Conf., Detroit, MI, 1986.
44.A. Asundi, ‘‘Computer aided moiré methods,’’ Opt. Lasers Eng. 17, pp. 107-116 , 1993.
45.C. M. Wong, ‘‘Image processing in experimental mechanics,’’ Mphil Thesis, University of Hong Kong, 1993.
46.B. E. Truax, ‘‘Fast Interferometers Bring Precision to Tough Applications,’’ Photonics Spectra, pp. 96-99, 1994.
47.A. J. P. van Haasteren and H. J. Frankena, ‘‘Real time displacement measurement using a multicamera phase stepping speckle interferometer,’’ Appl. Opt. 33, pp. 4137-4142, 1994.
48.M. Kujawinska, L. Salbut, and K. Patorski, ‘‘Three channel phase stepped system for moiré interferometry,’’ Appl. Opt. 30, pp. 1633-1635, 1991.
49.K. Bieman and K. Harding, ‘‘3D imaging using a unique refractive optic design to combine moire´ and stereo,’’ Proc. SPIE 3204, pp. 2—10, 1997.
50.K. Harding and L. Bieman, ‘‘High speed moiré contouring methods analysis,’’ Proc. SPIE 3520, pp. 27-35, 1998.
51.K. A. Haines and B. P. Hildebrand, ‘‘Contour generation by wavefront construction,’’ Phys. Lett. 19, pp. 10-11, 1965.
52.K. Creath, Y. Y. Cheng, and J. Wyant, ‘‘Contouring aspheric surface using two-wavelength phase shifting interferometry,’’ Opt. Acta 32, pp. 1455-1464, 1985.
53.R. P. Tatam, J. C. Davies, C. H. Buckberry, and J. D. C. Jones, ‘‘Holographic surface contouring using wavelength modulation of laser diodes,’’ Opt. Laser Technol. 22, pp. 317-321, 1990.
54.T. Maack, G. Notni, and W. Schreiber, ‘‘Three coordinate measurement of an object surface with a combined two-wavelength and twosource phase shifting speckle interferometer,’’ Opt. Commun. 115, pp. 576—584, 1995.
55.Y. Yu, T. Kondo, T. Ohyama, T. Honda, and J. Tsujiuchi, ‘‘Measuring gear tooth surface error by fringe scanning interferometry,’’ Acta Metrol. Sin. 9, pp. 120—123, 1986.
56.J. S. Zelenka and J. R. Varner, ‘‘Multiple-index holographic contouring,’’ Appl. Opt. 8, pp. 1431-1434, 1969.
57.Y. Y. Hung, J. L. Turner, M. Tafralian, J. D. Hovanesian, and C. E. Taylor, ‘‘Optical method for measuring contour slopes of an object,’’ Appl. Opt. 17, pp. 128-131, 1978.
58.H. Ei-Ghandoor, ‘‘Tomographic investigation of the refractive index profiling using speckle photography technique,’’ Opt. Commun. 133, pp. 33-38, 1997.
59.N. Abramson, ‘‘Holographic contouring by translation,’’ Appl. Opt. 15, pp. 1018-1022, 1976.
60.C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, ‘‘Contouring by electronic speckle pattern interferometry using dual beam illumination,’’ Appl. Opt. 29, pp. 1905-1911, 1990.
61.P. K. Rastogi and L. Pflug, ‘‘A holographic technique featuring broad range sensitivity to contour diffuse objects,’’ J. Mod. Opt. 38, pp. 1673-1683, 1991.
62.R. Rodrfguez-Vera, D. Kerr, and F. Mendoza-Santoyo, ‘‘Electronic speckle contouring,’’ Opt. Soc. Am. A 9, pp. 2000-2008, 1992.
63.L. S. Wang and S. Krishnaswamy, ‘‘Shape measurement using additive-subtractive phase shifting speckle interferometry,’’ Meas. Sci. Technol. 7, pp. 1748-1754, 1996.
64.E. Dalhoff, E. Fischer, S. Kreuz, and H. J. Tiziani, ‘‘Double heterodyne interferometry for high precision distance measurements,’’ Proc. SPIE 2252, pp. 379-385, 1993.
65.J. D. Trolinger, ‘‘Ultrahigh resolution interferometry,’’ Proc. SPIE 2861, pp. 114-123, 1996.
66.J. R. Huang and R. P. Tatam, ‘‘Optoelectronic shearography: two wavelength slope measurement,’’ Proc. SPIE 2544, pp. 300-308, 1995.
67.C. T. Griffen, Y. Y. Hung, and F. Chen, ‘‘Three dimensional shape measurement using digital shearography,’’ Proc. SPIE 2545, pp. 214-220, 1995.
68.C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo, ‘‘On the determination of slope by shearography,’’ Opt. Lasers Eng. 20, pp. 207-217, 1994.
69.T. D. DeWitt and D. A. Lyon, ‘‘Range-finding method using diffraction gratings,’’ Appl. Opt. 23, pp. 2510-2521, 1995.
70.T. D. Ditto and D. A. Lyon, ‘‘Moly, a prototype hand-held three dimensional digitizer with diffraction optics,’’ Opt. Eng. 39, pp. 69-78, 2000.
71.S. Seebacher, W. Osten, and W. Ju¨ptner, ‘‘Measuring shape and deformation of small objects using digital holography,’’ Proc. SPIE 3479, pp. 104—115, 1998.
72.C. Wagner, W. Osten, and S. Seebacher, ‘‘ Direct shape measurement by digital wavefront reconstruction and wavelength scanning,’’ Opt. Eng. 39, pp. 79-85, 2000.
73.G. Sirat and F. Paz, ‘‘Conoscopic probes are set to transform industrial metrology,’’ Sens. Rev. 18, pp. 108-110, 1998.
74.V. Sirnivasan, H. C. Liu, and M. Halioua, ‘‘Automated phase measuring profilometry of 3D diffuse objects,’’ Appl. Opt. 23, pp. 3105-3108, 1984.
75.J. A. Jalkio, R. C. Kim, and S. K. Case, ‘‘Three dimensional inspection using multistripe structured light,’’ Opt. Eng. 24, pp. 966-974, 1985.
76.S. Toyooka and Y. Iwasa, ‘‘Automatic profilometry of 3D diffuse objects by spatial phase detection,’’ Appl. Opt. 25, pp. 1630-1633, 1986.
77.F. Wahl, ‘‘A coded light approach for depth map acquisition,’’ in Proc. Muskererkennung 86, Informatik Fachberichte 125, Springer-Verlag, 1986.
78.E. Muller, ‘‘Fast three dimensional form measurement system,’’ Opt. Eng. 34, pp. 2754-2756, 1995.
79.H. Gartner, P. Lehle, and H. J. Tiziani, ‘‘New, high efficient, binary codes for structured light methods,’’ Proc. SPIE 2599, pp. 4-13, 1995.
80.G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, ‘‘Three dimensional imaging based on gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial application,’’ Appl. Opt. 36, pp. 463-4472, 1997.
81.M. Sjodahl and P. Synnergren, ‘‘Measurement of shape by using projected random patterns and temporal digital speckle photography,’’ Appl. Opt. 38, pp. 1990-1997, 1999.
82.A. Shashua, ‘‘Trilinear tensor: the fundamental construct of multipleview geometry and its applications,’’ in Proc. Int. Workshop on Algebraic Frames for the Perception Action Cycle, Kiel, Germany, 1997.
83.S. Avidan and A. Shashua, ‘‘Novel view synthesis by cascading trilinear tensors,’’ IEEE Trans. Visual. Comput. Graph. 4, 1998.
84.A. Shashua and M. Werman, ‘‘On the trilinear tensor of three perspective views and its underlying geometry,’’ in Proc. Int. Conf. On Computer Vision, Boston, MA, 1995.
85.J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara (ed.), Wiley, New York, 1992.
86.B. V. Dorrio and J. L. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques,” Measurement Science, 10, pp. 33-55, 1999.
87.V. Srinivasan, H. C. Liu and M. Halioua, “Automated phase-measuring profilometry: a phase mapping approach,” Applied Optics, 24, 185-188, 1985.
88.K. J. Gasvik and M. E. Fourney, “Projection moiré using digital video processing: a technique for improving the accuracy and sensitivity,” Journal of Applied Mechanics, Transactions of the ASME, 53, pp. 652-656, 1986.
89.F. Docchio, G. Sansoni and N. Viviani, “Light-induced transmission changes in liquid crystal displays for adaptive pattern projection,” IEEE Trans. Instrument Measurement, 41, pp. 629-632, 1992.
90.A. Asundi and W. Zhou, “Unified calibration technique and its applications in optical triangular profilometry,” Applied Optics, 38, pp. 3556-3561, 1999.
91.Y. R. Shiau and B. C. Jiang, “Determine a vision system’s 3D coordinate measurement capability using taguchi methods,” International Journal of Production Research, 29, pp. 1101-1122, 1991.
92.D. Edwards, “Development of JEDEC standard thermal measurement test boards,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, 19, pp. 478-485, 1996.
93.G. Frankowski, M. Chen and T. Huth, “Real-time Shape Measurement with Digital Stripe Projection by Texas Instruments Micromirror Devices DMDTM,” Electronic Imaging Trans. Three Dimensional Image Capture and Analysis Ⅲ, 2000.
94.D. Dudley, W. Duncan, and J. Slaughter, “Emerging Digital Micromirror Device (DMD) Applications,” Company Information, Texas Instruments, Inc., Plano, Texas.
95.D. W. Monk and R. Gale, “The Digital Micromirror Device for Projection Display,” Microelectronic Engineering, 27, pp. 489-493, 1995.
96.L. J. Hornbeck, “Digital Light Processing and MEMS: Timely Convergence for Bright Future,” Micromachining and Microfabrication ´95, Austin/TX, USA, 1995.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top