跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林忠舜
研究生(外文):Jung-Shuen Lin
論文名稱:利用酸鹼中和法由氯化銅酸性蝕刻廢液製備奈米氧化銅微粒之研究
論文名稱(外文):Preparation of CuO Nanoparticle from Copper Chloride-Containing Wasted Etchant by Alkali Neutralization
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:116
中文關鍵詞:印刷電路板氯化銅蝕刻液酸鹼中和法水熱及超音波震盪法奈米氧化銅X光吸收邊緣結構延伸X光吸收精細結構
外文關鍵詞:PCBCopper chloride etchant wasteAlkali NeutralizationHydrothermal and ultrasonic neutralizationCuO nanoparticlesXANESEXAFS
相關次數:
  • 被引用被引用:12
  • 點閱點閱:882
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
印刷電路板廠每年排放約6000萬公升的含10-15%銅蝕刻廢液,目前於業界中大都使用分流或儲存委外處理方式;因此本研究主要目的為使用在印刷電路板業中含銅量較高之酸性含氯化銅蝕刻液,其中主要組成成份為氯化銅、鹽酸及水;因而使用酸鹼中和法將酸性蝕刻廢液製備成為奈米氧化銅微粉,以達廢棄物資源再利用之永續經營。
本實驗使用之酸鹼中和法可分為水浴法與超音波震盪法兩種,其中中和法又分為鹼酸及酸鹼中和滴定方式進行,並控制不同pH值、反應溫度及煅燒溫度,製備不同晶相形狀及顆粒大小的奈米氧化銅粉末,在中和反應蝕刻液添加NaOH溶液時,當溫度低於40℃且pH = 5-8時形成氧氯化銅CuO2.2CuCl,而pH = 9則形成Cu(OH)2;不過在高於40℃且pH>10時,則轉變成為CuO。藉由場發掃描式電子顯微鏡(FE-SEM)及穿透式電子顯微鏡(TEM)觀察不同反應溫度之產物,溫度低於40℃以下形成棒柱狀,高於40℃則形成片狀結構;使用超音波震盪方式可得到長150-400 nm、寬25-100 nm的奈米氧銅微粉;比較此三種合成奈米氧化銅方法,在鹼酸中和反應時因反應溫度的不同而由膠狀形成顆粒狀,而導致在較低溫時不易攪拌;酸鹼中和反應時當溫度高於40℃時即形成氧化銅微粉且易於攪拌;使用合成效較佳的超音波震盪法,可增快合成反應速率,所生成之氧化銅微粉具顆粒細小及反應時間短的優點。
使用熱重法(TGA)分析不同pH値下所合成之氧化銅產物,其中pH > 12時,氯離子含量才可能被完全移除。另外,利用X-ray粉末繞射儀(XRPD)比較不同pH值之晶形結構,pH由10~12時晶形結構由氧氯化銅成為CuO微粉。為了深入瞭解奈米CuO產物之表面精細結構,進一步使用光電子能譜儀(XPS)及電子順磁共振儀(EPR)對奈米氧化銅微粒進行分析,在Cu 2p3/2能階顯示為Cu(II)及平面四方型結構,由此推斷本實驗所製備出之奈米氧化銅微粒主要為CuO而非Cu2O的結構。經由延伸X光吸收精細結構及X光吸收邊緣結構(EXAFS/XANES)分析銅的氧化價數主要為2價,Cu-O鍵距為1.94±0.02 Å,配位數為3.5±0.1。由ICP/AES分析奈米氧化銅粉之銅離子濃度,金屬銅含量達99% ,且生成之副產物主要有氯化鈉、水及微量Zn、Pb、Ni、Mn、Cr金屬,符合PCB廠CuO回收再利用為原料之基本品質規範。
關鍵詞:印刷電路板、氯化銅蝕刻液、酸鹼中和法、水熱及超音波震盪法、奈米氧化銅、X光吸收邊緣結構、延伸X光吸收精細結構。
At present, over 60 million liters per year of 10-15 % copper-containing waste etchants (CCWEs) generated from printed circuit board (PCB) manufacturing are disposed of in Taiwan. The CCWEs are mainly composed of copper chloride, hydrochloric acid, and water. Since the disposal of the etchants without proper treatment has posed an environmental problem, the separation or storage method have been previously used. Therefore, resource recovery of these undesired waste etchants in the form of high-purity CuCl2, would be economically and environmentally attractive.
Experimentally, the CuO nanoparticles were recovered from CCWEs by using hydrothermal and ultrasonic neutralization with alkali hydroxide. The control factors of the synthetic experiments included the neutralization types, pH values, reaction temperatures or calcined temperatures of CuO products. In the neutralization process by addition of the NaOH into the CCWEs, the precipitates of CuCl2.3Cu(OH)2 and Cu(OH)2 were formed below 40℃at pH = 5-8 and 9, respectively. However, the CuO nanoparticles were produced above 40℃ and pH>10. The properties of liquid residues and CuO precipitates were further analyzed by using ICP/AES, XRD, FESEM, TEM, XPS, EPR or EXAFS/XANES spectroscopy. From the FE-SEM microphotos, needle and slit shape CuO residues were found below and above 40℃, respectively. The comparison of the results for hydrothermal forward- or backward-neutralization with ultrasonic neutralization methods, the later one had the advantages of shorter reaction times and smaller CuO particles with diameters of approximately 25-100 nm and lengths of 50-400 nm.
By using TGA method, the chlorine-free CuO nanoparticles were formed and confirmed at pH > 12. The XRPD patterns showed the precipitates transformed from CuCl2.3Cu(OH)2 to CuO at pH = 10-12. Existence of the Cu(II) was also confirmed by XANES and XPS spectroscopy. The CuO nanoparticles with a square-plane structure were observed by EPR spectra. The CuO nanoparticle with a Cu-O bond distance of 1.94 ± 0.02 Å and a coordination number of 3.5 ± 0.1 was also measured by EXAFS spectroscopy. From ICP/AES data, more than 99% of the copper in CuO recovered from CCWEs. The major by-products in recovered CuO nanoparticles were NaCl, H2O, and trace heavy metals such as Zn, Pb, Ni, Mn or Cr.
Keywords: PCB, Copper chloride etchant waste, Alkali Neutralization, Hydrothermal and ultrasonic neutralization, CuO nanoparticles, XANES, EXAFS.
中文摘要 I
ABSTRACT III
誌 謝 V
目 錄 VI
圖目錄 IX
表目錄 XII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
第二章 文獻回顧 4
2.1 印刷電路板製程概述 4
2.1.1 製造方法及流程 4
2.1.2 製程單元 13
2.2 蝕刻液簡介 21
2.2.1 蝕刻液種類及蝕刻機制 21
2.2.1.1 氯化鐵蝕刻液 21
2.2.1.2 氯化銅蝕刻液 22
2.2.1.3 過硫酸銨蝕刻液 23
2.2.1.4 鉻酸蝕刻液 24
2.2.1.5 亞氯酸鈉蝕刻液 24
2.2.1.6 鹼性氯化銨氨銅蝕刻液 24
2.2.1.7 硫酸-雙氧水蝕刻液 25
2.2.1.8 氣相蝕刻 25
2.3 蝕刻液回收方式 27
2.3.1 氯化鐵蝕刻液 27
2.3.2 氯化銨蝕刻液回收方法 28
2.3.3 氯化銅蝕刻液 31
2.3.4 過硫酸銨系列蝕刻液 32
2.3.5 硫酸-雙氧水系列 33
2.3.6 硝酸蝕刻液 34
2.4 氧化銅製作方法 35
第三章 實驗方法與分析步驟 39
3.1 實驗藥品 39
3.2 實驗器材 39
3.3 實驗步驟 40
3.4 分析設備與方法 41
3.4.1 感應耦合電漿原子放射光譜儀(ICP/AES) 41
3.4.2 紅外光吸收光儀(FT-IR) 44
3.4.3 熱重分析儀(TGA) 45
3.4.4 X-ray粉末繞射儀(XRPD) 46
3.4.5 比表面積測定實驗(BET) 49
3.4.6 場發掃描式電子顯微鏡(FE-SEM) 50
3.4.7 穿透式電子顯微鏡(TEM) 52
3.4.8 X光光電子能譜儀(XPS) 54
3.4.9 電子順磁共振儀(EPR) 57
3.4.10 同步輻射吸收光譜 59
第四章 結果與討論 62
4.1 由蝕刻液製備氧化銅微粉 62
4.1.1 蝕刻液中重金屬含量 62
4.1.2 蝕刻液在不同pH時變化 64
4.1.3 中和反應後氯化鈉處理 68
4.2 結晶形狀變化 69
4.2.1 FE-SEM分析 69
4.2.2 TEM分析 76
4.3 氧化銅結構分析 78
4.3.1 熱重損失量 78
4.3.2 X-ray粉末繞射分析結果 83
4.3.3 X光光電能譜分析結果 89
4.3.4 電子順磁共振分析結果 92
4.3.5 BET比表面積分析 96
4.3.6 X光吸收邊緣結構性質分析 97
4.3.7延伸X光吸收精細結構性質分析 99
4.3.8 合成之微粉金屬含量分析 101
4.3.9 蝕刻液製備CuO三種合成方法比較 102
第五章 結論與未來研究方向 103
5.1結論 103
5.2 建議及未來研究方向 105
參考文獻 106
附錄一 不同煅燒溫度下FE-SEM圖 113
附錄二 ESCA全譜圖 116
1. 林文介,「印刷電路板蝕刻液研究」,碩士論文,國立清華大學化學工程研究所(1999)。
2. 王宗雄,「高密度細線化需求下的銅化學蝕刻製程」,工業材料,第168期,161-170(2000)。
3. 經濟部工業局,「印刷電路板業環保工安整合性技術手冊」,民國八十九年九月。
4. 林均輝,「印刷電路板用蝕刻液發展趨勢」,電路板資訊,第12期,24-30(1988)。
5. 曾立鑫,「印刷電路板非氨系蝕刻液之研究」,碩士論文,國立清華大學化學工程研究所(1998)。
6. Poor J.G., and Hsu G. F., Ammoniacal etching solution and method utilizing same, U. S. Patent 3753818 (1973).
7. Daugherty P. M.., and Vaughn H. C., Powderless etching of copper plate, U. S. Patent 3033725 (1962).
8. Bradley J. W., and Borth P. F.,Composition and process for powderless etching, U. S. Patent 3161552 (1964).
9. Borth P. F., Etching of printed circuit components, U. S. patent 3287191 (1963).
10. 張良濤,「氯化銅蝕刻液之研究」,技術學刊,第九卷,第3期,291-297(1990)。
11. 江德馨,「鹼性蝕銅液與酸性蝕銅液之介紹」,電路板資訊,第12期,78-89(1988)。
12. Jülich L. F., Ammoniated etching solution and process for its regeneration utilizing ammonium chloride addition, U.S.Patent 4564428 (1986).
13. 楊志雄,「氯化銅蝕刻之監控」,電路板資訊,第30期,91-93 (1990)。
14. Zeblisky R.J., Peroxy containing compositions, U.S.Patent 3809588 (1974).
15. Shipley C. R., and Gulla M., Etchant for cupreous metals, U. S. Patent 3650957 (1972).
16. Shipley C. R., Etchant for cupreous metals, U. S. Patent 3650958 (1972).
17. Slominski L. J., and Siegmund A. J., Solution and method for dissolving copper, U. S. Patent 3717521 (1973).
18. Margulies P. H., and Kressbach J. E., Process and composition for the dissolution of copper, U. S. Patent 2978301 (1961).
19. Lancy L. E., Copper and aluminum pickling, U. S. Patent 3537895 (1970).
20. Glanville J. O., Stabilization of acidified hydrogen peroxide solutions, U. S. Patent 3649194 (1972).
21. Borth P., and McKeone J., Composition and method for etching photoengraving copper printing plates, U. S. Patent 3514409 (1974).
22. Faul W., and Füres L., Method and apparatus for regerating an ammoniacal etching solution, U. S. Patent 4576677(1968).
23. Natwig D. L., and Skarbo R. R.,Scrubbing of ammonia from oxime liquid ion exchange reagents, U. S. Patent 4012482 (1977).
24. Aderson B., Oximes, U. S. Patent 4029704 (1977).
25. Ogata S., Electromagnetic change-over valve, U. S. Patent 3952775 (1976).
26. Ackerley N., Mack P. A., and Johnson D. H., Oxime, U. S. Patent 4020105 (1977).
27. Beswick G. E., Process for preparing o-hydroxyarylaldehydes, U. S. Patent 4085146 (1978).
28. Ackerley N., and Mack P. A., Matal extraction process, U. S. Patent 4020106 (1977).
29. Mattison P. L. and Swanson R. R., Process of extracting copper with certain substituted 2-hydroxybenzophenoximes, U. S. Patent 3655347(1972).
30. Swanson R. R., compositions containing phenlolic oximes and certain α-hydroxy aliphatic oximes, U.S. Patent 3592775 (1971).
31. Swanson R. R., Extraction of copper from acidicliquors with a phenolic oxime, U. S. Patent 3428449 (1969).
32. Drobnick J. L., and Millsap W. A., Separation of nickel and cobalt value using α-hydroxy oximes, U. S. Patent 3276863 (1966).
33. Blytas G. C., Process for extracting copper, cobalt and nickel values from aqueous solution, U. S. Patent 3703573 (1972).
34. Thomas V. H., and Alan P., Solvent extraction and electrowinning of copper, U. S. Patent 3703451 (1972).
35. Heidelberg E. X., Preparation of electronic grade copper, U. S. Patent 3881914 (1974).
36. Solenberger J. C.,Stabilized acidic hydrogen peroxide solution, U. S. Patent 3801512 (1974).
37. 陳元慶、林淙敏、王振豐、張嫈女,「印刷電路板製作用硫酸/雙氧水蝕刻液的回收處理及其資源化之現況」,工業污染防治,第59期,125-131(1996)。
38. Hillis M. R., Mathod and apparatus for etching copper, U. S. Patent 4545877 (1985).
39. Lee M. S., Ahn J. G., and Ahn J. W., Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution, Hydrometallurgy, 70(1-3), 23-29 (2003).
40. Wang Z., Pischedda V., Saxena S.K., and Lazor P., X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures, Solid State Commun. , 121(5), 275-279 (2002).
41. Krupke R., Barkay Z.,and Deutscher G., A systematic approach to reduce macroscopic defects in c-axis-oriented YBCO films, Physica C, 317(1), 536—539 (1999).
42. Vasiliev R.B., Rumyantseva M.N., Podguzova S.E., Ryzhikov A.S., Ryabova L.I., and Gaskov A.M., Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure, Mater. Sci. Eng. B, 57(3), 173-268 (1999).
43. Balian A., Hatzigiannis G., Eng D., and Stoukides M., Solid electrolyte aided study of the oxidation of hydrogen on copper and copper oxide catalysis, J. Catal., 145(2), 526-536 (1994).
44. Zeshanh H., Junxiu D., Songying C., and Shaoyi P., Preparation and characterization of surface-covered nanometer-sized catalyst by carboxylate phase transfer, J. Colloid Interface Sci., 194(2), 332-337 (1997).
45. Skårman B., Nakayama T., Grandjean D., Benfield R. E., Olsson E., Niihara K. and Wallenberg L. R., Morphology and structure of CuOx/CeO2 nanocomposite catalysts produced by inert gas condensation: An HREM, EFTEM, XPS, and high-energy diffraction study, Chem. Mater., 14(9), 3686-3699 (2002).
46. Bromley S. T., French S. A., Sokol A. A., Catlow C. R. A. and Sherwood P., Metal cluster support interactions in the Cu/ZnO system: a QM/MM study, J. Phys. Chem. B, 107(29), 7045-7057 (2003).
47. Carnes C. L., Klabunde K. J., The catalytic methanol synthesis over nanoparticle metal oxide catalysts, J. Mol. Catal. A: Chem., 194(1-2), 227-236 (2003).
48. Taylor S. H., Hutchings G. J., and Mirzaei A. A., The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation, Catal. Today , 84(3-4), 113-119 (2003).
49. 郭欣怡,「以水溶液沉澱法製備不同形貌之氧化銅」,碩士論文,國立師範學院數理研究所(2003)。
50. Ďurišin J., Orolĺnová M., and Ďurišinová k.,Mechanochemical method of nanocrystalline powder copper preparation, J. mater. Sci. Lett.,13(1), 688-689 (1994).
51. Wang W. Z., Zhan Y., Wang X., Liu Y., Zheng C., and Wang G., Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant, Mater. Res. Bull., 37(6), 1093-1100 (2002).
52. Xu J. F., Ji W., Shen Z. X., Tang S. H., Ye X. R., Jia D. Z., and Xin X. Q., Preparation and Characterization of CuO Nanocrystals, J. Solid State Chem. , 147(2), 516-519 (1999).
53. Kumar R. V., Diamant Y., and Gedanken A., Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates, Chem. Mater., 12(8), 2301-2305 (2000).
54. Kumar R. V., Elgamiel R., Diamant Y., Gedanken A., and Norwig J., Sonochemical Preparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly(vinyl alcohol) and Its Effect on Crystal Growth of Copper Oxide, Langmuir, 17(5), 1406-1410 (2000).
55. Xu C. k., Liu Y. k., Xu G., and Wang G., Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor, Mater. Res. Bull., 37(14), 2365-2372 (2002).
56. Carnes C. L., Stipp J.,and Klabunde K. J., Synthesis, Characterization, and Adsorption Studies of Nanocrystalline Copper Oxide and Nickel Oxide, Langmuir, 18(4) 1352-1359(2002).
57. Jiang X., Herricks T., and Xia Y., CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air, Nano Lett., 2(12), 1333-1338 (2002).
58. Vorobyova S. A., Lesnikovich A. I., and Muchinskii V. V., Interphase synthesis and some characteristics of stable colloidal solution of CuO in octane, Coll. Surf. A, 150(1-3) 297—300 (1999).
59. Maruyama T., Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate, Sol. Energy Mater. Sol. Cells , 56(1) 85—92 (1998).
60. Hong Z. S., Cao Y., and Deng J. f., A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles,. Mater. Lett. 52(1-2) 34-38 (2002).
61. Dierstein A., Natter H., Meyer F., Stephan H.-O., Kropf Ch., and Hempelmann R., Electrichemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides, Scripta Mater., 44(8-9), 2209-2212 (2001).
62. Wang H., Xu J. Z., Zhu J. J., and Chen H. Y., Preparation of CuO nanoparticles by microwave irradiation, J. Cryst. Growth, 244(1) 88-94 (2002).
63. Chen D., Shen G., Tang K., and Qian Y., Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route, J. Cryst. Growth, 254(1-2), 225-228 (2003).
64. Clair N. S., McCarty L. M. and Parkin F. P., chemical for environmental engineerinr, 4th ed., 152-173 (1994).
65. Kim Y. K. , Riu D. H., Kim S. R. and Kim B. I. Preparation of shape-controlled copper oxide powders from copper-containing solution, mater. Lett., 54(2-3), 229-237 (2002).
66. 林敬二、楊美惠、楊寶旺、廖德章及薛敬和「化學大辭典」,高立圖書公司, pp. 327-375(1993)。
67. Wu H. Q., Wei X. W., Shao M. W., Gu J. S. and Qu, M. Z., Synthesis of copper oxide nanoparticles using carbon nanotubes as templates, Chem. Phys. Lett., 364(1-2), 152-156 (2002).
68. Vorobyova S.A., Lesnikovich A. I. and Muchinskii V.V., Interphase synthesis and some characteristics of stable colloidal solution of CuO in octane, Colloids Surf. A, 150(1-3), 297-300 (1999).
69. Coombs C. F., Printed Circuits Handbook, 2nd Ed., pp. 8-10-8-27, McGraw-Hill, New York (1979).
70. Parikh G., Gayer E. C. and Willard, Western electric engineer, XVI(2),pp 2-8, April (1972).
71. Missel L. and Murphy F. D., metal finishing 58(12), 47-52 (1969).
72. F. Gorman, Regenerative cupric chloride copper etchant, California circuit association meeting, 1973. electronic packaging and production, pp 43-46, January (1974).
73. W. Thurmal, Continuously regenerating enerating copper-containing etching solution, U.S. Patent 3306792 (1963).
74. 孫逸民、陳玉舜、趙敏勳、謝明學及劉興鑑「儀器分析」,全威圖書有限公司, pp. 225-263(1998)。
75. Lin K. S., wang H. P. and Li M. C., A process development for gasification of rice husk, Chemosphere, 36(9), 2075-2083 (1998).
76. Viano A., Mishra S. R., Lloyd R., Losby J., Gheyi T., Thermal effects on ESR signal evolution in nano and bulk CuO powder, J. Non-Cryst. Solids, 325(1-3), 16-21 (2003).
77. Yannick C., Amédeé R., and Yves G., André L., Hypothèse cristallochimique des mécanismes de formation de CuO(s) et de Cu(OH)2(s) à partir de Na2Cu(OH)4(s), C. R. Acad. Sci. paris. Series IIC Chimie, 3(8), 661-666 (2000).
78. Hsiao M. C., Wang H. P. and Yang T. W., EXAFS and XANES studies of copper in a solidified fly ash, Environ. Sci. Technol, 35(12), 2532-2535 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳光華,江玉婷,莊雅蓁,許雅淑(民87,6月)。引文分析研究發展現況。書府,18/19,15-47。
2. 邱淑麗、王梅玲、李美慧(民89,6月)。我國科技期刊引用文獻資料庫原型之建置與應用。資訊傳播與圖書館學,6(4),49-69。
3. 蔡明月、吳嘉雯(民90,12月)。半導體期刊共被引研究。資訊傳播與圖書館學,8(2),9-21。
4. 羅思嘉(民90,6月)。引用文獻分析與學術傳播研究。中國圖書館學會會報,66,73-85。
5. 洪文琪(民92,4月)。運用文獻計量指標於學術績效評鑑--各國生物醫藥科學發展情形。科技發展標竿,3(2),35-44。上網日期:民92年10月15日。網址:http://www.stic.gov.tw/policy/intelligence_2_g.htm
6. 陳筱蕾(民90,10月)。臺灣生命科學領域之文獻計量指標--兼論臺灣與歐盟科學活動指標之比較。科技發展標竿,1(2),25-34。上網日期:民92年10月15日。網址:http://www.stic.gov.tw/policy/intelligence_2_g.htm
7. 陳筱蕾(民91,4月)。文獻計量指標與學術評鑑--臺灣的物理學表現。科技發展標竿,2(2),25-33。上網日期:民92年10月15日。網址:http://www.stic.gov.tw/policy/intelligence_2_g.htm
8. 2. 王宗雄,「高密度細線化需求下的銅化學蝕刻製程」,工業材料,第168期,161-170(2000)。
9. 10. 張良濤,「氯化銅蝕刻液之研究」,技術學刊,第九卷,第3期,291-297(1990)。
10. 37. 陳元慶、林淙敏、王振豐、張嫈女,「印刷電路板製作用硫酸/雙氧水蝕刻液的回收處理及其資源化之現況」,工業污染防治,第59期,125-131(1996)。