(3.238.7.202) 您好!臺灣時間:2021/03/01 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭勝陽
研究生(外文):Sheng-Yang Hsiao
論文名稱:丁聚醣和羧甲基纖維素鈉聚電解質複合膜在滲透蒸發分離異丙醇與水混合物之應用
論文名稱(外文):On the separation of IPA / water by pervaporation using polyelectrolyte complex membranes
指導教授:孫一明
指導教授(外文):Yi-Ming Sun
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:95
中文關鍵詞:幾丁聚醣羧甲基纖維鈉聚電解質複合膜滲透蒸發
外文關鍵詞:chitosancarboxymethyl cellulose sodiumpolyelectrolyte complex membranepervaporation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:218
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用幾丁聚醣(chitosan, CS)與羧甲基纖維鈉(carboxymethyl cellulose sodium, CMC)形成聚電解質複合膜(polyelectrolyte complex membrane),應用於滲透蒸發分離異丙醇與水混合溶液。薄膜製備原理是利用聚陽離子型高分子(polycation)的CS與聚陰離子型高分子(polyanion)的CMC,藉著amine group和carboxy group間庫倫靜電交互作用力而產生離子鍵結,形成聚電解質複合膜。研究中利用兩種方式製備薄膜,一種是使用刮刀在玻璃板上成出CS基材薄膜,之後在基材膜上成出CMC膜,形成膜厚20±2 μm的聚電解質複合膜﹔其次是利用培養皿成膜法,製備出厚度較厚之聚電解質複合膜。研究中利用了SEM來觀察聚電解質複合膜表面與截面形態,藉AFM觀察表面粗糙度變化,藉FTIR光譜鑑定CS膜材改質後官能基的變化,使用XPS來觀測表面元素組成,以及觀察各種膜材表面接觸角的差異。
滲透蒸發結果發現,當加入甲基纖維素鈉後的複合膜不論在通量與滲透水濃度都比純幾丁聚醣膜高,且隨著加入的羧甲基纖維素鈉的濃度越高,滲透通量與滲透水濃度都有顯著提高。CSCMC-4膜在溫度70℃,進料濃度為70 wt% IPA時,滲透通量可達1970 (g / m2 × h),而滲透水濃度可以維持在98 wt% 以上,隨著進料IPA濃度越高,膜材膨潤性也就降低,進而減少滲透通量,但可提高滲透水濃度,而溫度升高增加了氣體分子動能,讓高分子鏈變的更柔軟,因此隨著操作溫度增加,滲透通量也隨著增加,但是滲透水濃度會有稍微下降的趨勢。由Arrhenius關係圖可算出IPA的活化能的是水的3.3倍以上,可證明聚電解質複合膜在滲透蒸發實驗上是選擇水的。由於複合膜材整體還是以CS材料為主,所以膜材並沒有因為形成聚電解質複合膜而增加長時間的穩定度。
研究中發現CS膜的機械性質雖明顯比CMC好,但CS膜加入CMC後,膜材的強度、硬度與韌度都比改質前更佳。由於複合膜的改質只在薄膜表面,所以複合膜主體還是以CS膜為主,因此在TGA的實驗結果上,並沒有因為離子交聯而明顯提高熱穩定度。
In this study, polyelectrolyte complex membranes were prepared by chitosan (CS) and carboxymethyl cellulose sodium (CMC) for the separation of isopropyl alcohol and water by pervaporation. Dense chitosan membranes were prepared on glass plates by solvent casting methods. After drying at room temperature, carboxymethyl cellulose sodium solution was cast on the top of the chitosan membranes. The thickness of polyelectrolyte complex membranes was 20±2μm. The polyelectrolyte complex reaction took place by electrostatic interaction, and the ionic crosslinking between the polycation (chitosan) and the polyanion (carboxylmethyl cellulose) was found. The ionic crosslinking was confirmed and characterized by SEM, AFM, FTIR-ATR/microscope, XPS, and contact angle measurement.
The performance of the polyelectrolye complex membranes in pervaporation was evaluated. The total permeate flux and water concentration in permeate through a CS-CMC complex membrane were better than that through a pure chitosan membrane. The total flux and water concentration in permeate increased as the concentration of CMC used to prepare the membranes increased. In addition, the total flux increased with temperature, and the water concentration in permeate decreased with temperature. The increase of total flux with temperature was resulted from the increase of the kinetic energies of the polymer chains and the penetrating molecules. The activation energy of pervaporation for IPA was about 3.3 times of that for water. It indicates that the polyelectrolyte complex membranes favor water permeation in the pervaporation process.
The mechanical properties of a chitosan membrane are obviously better than those of a CMC membrane. However, the Young’s modulus, tensile strength and elongation at break of the CMC modification polyelectrolyte complex membranes were better than those of a pure chitosan membrane. The thermal decomposition behaviors of the polyelectrolyte complex membranes were similar to that of a pure chitosan membrane in a TGA study indicated that the main body of the complex membrane was still composed of chitosan.
中文摘要 I
英文摘要 III
目錄 V
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1 滲透蒸發簡介 2
1.2 幾丁聚醣簡介 3
1.3 纖維素簡介 3
1.4 研究目的與範疇 3
第二章 研究原理與方法 6
2.1 幾丁質(Chitin) 6
2.2 幾丁聚醣 (Chitosan) 8
2.2.1 幾丁聚醣之結晶形態 9
2.2.2 幾丁聚醣之拉力與膨潤性質 10
2.2.3 幾丁聚醣之滲透性質 10
2.3 羧甲基纖維素鈉 11
2.3.1羧甲基纖維素鈉之滲透性質 12
2.4 滲透蒸發 12
2.4.1 滲透蒸發之原理 14
2.4.2 滲透蒸發之理論 15
2.4.3 滲透蒸發之定義 17
2.4.3.1 通量(Flux) 17
2.4.3.2 選擇性(selectivity) 17
2.5 脫水程序膜材之選擇 17
2.6 幾丁聚醣膜材之改質 18
2.6.1 利用glutraldehyde (GA) 當作交聯劑 19
2.6.2 利用sulfuric acid (H2SO4) 當作交聯劑 21
2.6.3 利用formaldehyde (FA) 當作交聯劑 22
2.6.4 利用sulfosuccinic acid 當作交聯劑 22
2.7 聚電解質複合膜 24
2.7.1 聚電解質複合膜的定義 24
2.7.2 聚電解質複合膜的滲透性質 26
第三章 實驗方法 28
3.1 實驗藥品 28
3.2 實驗設備與器材 28
3.3 膜材製備 31
3.3.1 玻璃板刮膜法 32
3.3.2 培養皿成膜法 32
3.4 滲透蒸發實驗 33
3.4.1 簡介 33
3.4.2實驗步驟 33
3.5 GC之分析 34
3.6 膨潤實驗 36
3.6.1 簡介 36
3.6.2 實驗步驟 36
3.7液相吸附實驗 37
3.7.1 簡介 37
3.7.2 頂空間 (headspace) 37
3.8 紅外光光譜分析實驗 (FTIR) 38
3.8.1 簡介 38
3.8.2 實驗步驟 38
3.9 X光光電子能譜分析實驗 (XPS) 38
3.9.1 簡介 38
3.9.2 實驗步驟 39
3.10 接觸角實驗 39
3.10.1 簡介 39
3.10.2 實驗步驟 40
3.11機械性質測試 40
3.11.1 簡介 40
3.11.2 實驗步驟 40
3.12 熱重分析實驗 (TGA) 41
3.12.1簡介 41
3.12.2 實驗步驟 42
3.13 掃描式電子顯微鏡 (SEM)觀察 42
3.13.1 簡介 42
3.13.2 實驗步驟 42
3.14 原子力顯微鏡 (AFM)觀察 42
3.14.1 簡介 42
3.14.2 實驗步驟 43
第四章 結果與討論 44
4.1 膜材製備之討論 44
4.2 掃描式電子顯微鏡 (SEM) 44
4.3 原子力顯微鏡(AFM) 45
4.4 表面接觸角測試 46
4.5 紅外線光譜分析 (FTIR) 47
4.6 X光光電子能譜分析 (XPS) 48
4.7 機械性質分析 50
4.8 熱重性質分析 (TGA) 51
4.9 滲透蒸發實驗 51
4.9.1 進料濃度與操作溫度對滲透蒸發之影響 51
4.9.2 膜材厚度對滲透蒸發之影響 53
4.9.3長時間膜材穩定度之影響 54
4.10 膨潤度測試 54
第五章 結論 89
參考文獻
參考文獻
Barbucci, R., A. Magnani and M. Consumi, “Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density,” Macromolecules, 33, 7475 (2000)
Blair, H. S., J. Guthrie, T. Law, and P. Turkington, “Chitosan and modified chitosan membrane. I. preparation and characterization,” J. Appl. Polym. Sci., 33, 641-656 (1987)
Dumitriu, S, and E. Chornet, “Inclusion and release of proteins from polysaccharide-based polyion complexes,” Adv. Drug Delivery Rev., 31, 223-246 (1998)
Feng, X., and R. Y. M. Huang, “Liquid separation by membrane pervaporation: A review,” Ind. Eng. Chem. Res., 36, 1048 (1997).
Huang, R. Y. M., and J. J. Shieh, “Pervaporation with chitosan membrane II. Blend membrane of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of chitosan and polyacrylic acid for the separation of ethanol-water mixture,” J. Membr. Sci., 127, 185 (1997)
Huang, R. Y. M., G. Y. Moon, R. Pal, “Chitosan/anionic surfactant complex membrane for the pervaporation separation of methanol/MBTE and characterization of the polymer/surfactant system,” J. Membr. Sci., 184, 1 (2001)
Jochen, M. H., W. Lenk, D. Lehmann, K. Lunkwitz, “Pervaporation separation of water/alcohol mixture using composite membrane based on polyelectrolyte multilayer assemblies,” J. Membr. Sci., 184, 233-243 (2001)
Jonggeon, J., K. H. LEE, “Chitosan membranes crosslinked with sulfosuccinic acid for the pervaporation separation of water/alcohol mixtures,” J. Appl. Polym. Sci., 71, 671—675 (1999)
Kim, S. G., G. T. Lim, J. Jegal, and K. H. Lee, “Pervaporation separation of MTBE (methyl tert-butyl ether) and methanol mixtures through polyion complex composite membrane consisting of sodium alginate/chitosan,” J. Membr. Sci., 174, 1 (2000)
Lee, Y. M., “Modified chitosan membrane for pervaporation,” Desalination, 90, 277-290 (1993)
Mochizuki, A., S. Amiya, Y. Sato, H. Ogawara, and S. Yamashita, “Pervaporation Separation of Water Ethanol Mixture through polysaccharide Membrane. III. The Permselectivity of the Neutralized Chitosan Membrane and the Relationships Between Its Permselectivity and Solid State Structure,” J. Appl. Polm. Sci., 37, 3385 (1989)
Moon, G. Y., R. Pal, R. Y. M. Huang, “ Novel two-ply composite membrane of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol,” J. Membr. Sci., 156, 17-27 (1999)
Mulder, M., Basic Princiles of Membrane Technology, 2nd ed., Kluwer, London (1997)
Musale, D. A., A. Kumar, “Effects of surface crosslinking on sieving characteristics of chitosan/poly(acrylonitrile) composite nanofiltration membranes,” Sep. and Purif. Tech., 21, 27—38 (2000)
Nam, S. Y., Lee, Y. M., “Pervaporation separation of methanol/methyl T-butyl ether through chitosan composite membrane modified with surfactants,” J. Membr. Sci., 157, 63-71 (1999)
Okada, T., M. Yoshikawa, T. Matsuura, “A study on the pervaporation of ethanol-water mixtures on the basis of pore flow model,” J. Memb. Sci., 59, 151 (1991)
Okada, T., T. Matsuura, “A new transport model for pervaporation,” J. Memb. Sci., 59, 133 (1991)
Baker, R. W., Membrane Technology and Application, McGraw-Hill, New York (2000)
Reineke, E., J. A. Jagodzinski, and K. R. Denslow, “Highly water selective cellulosic polyelectrolyte membranes for the pervaporation of alcohol-water mixtures,” J. Membr. Sci., 32, 207 (1987)
Rogers, C. E., “Solution and diffusivity,” Physics and Chemistry of the Organic Solid State, Chap. 6, Vol. II, D. Fox, M. M. Labes, and A. Weissberger, eds., Wiley-Interscience, New York (1965).
Semenova, S. I., H. Ohya, and K. Soontarapa, “Hydrophilic membrane for pervaporation: An analytical review,” Desalination, 110, 251-286 (1997)
Uragami, T., M. Takuro, T. Miyata, “Evaporation characteristics of cross-Linked quaternized chitosan memvranes for the separation of an ethanol/water azeotrope,” Macromol. Chem. Phys., 203, 1162-1170 (2002)
Uragami, T., T. Matsuda, H. Okuno, T. Miyata, “Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions,” J. Membr. Sci., 88, 243-251 (1994)
Wade, P. J. Weller, Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1994)
Wijmans, J. G., and R. W. Baker, “The solution diffusion model: A review,” J. Memb. Sci., 107, 1 (1995)
Yu, Y., W. Li, T. Yu, “Crosslimking chitosan membrane for pervaporation of water —ethanol mixture,” Polym. comm., 31, 319~321 (1990)
郭佩芸, “幾丁聚醣生物基材及滲透蒸發薄膜之製備,” 碩士論文, 台灣大學 (2002)
郭岳霖, “不同的交聯性幾丁聚醣薄膜在滲透蒸發上之比較與探討,” 碩士論文, 成功大學 (1999)
林新賀, “殼聚醣薄膜應用於滲透蒸發法分離DMF/Water溶液之探討,” 台灣科技大學 (1998)
江宜蓁, “薄膜電荷量測與膜過濾電動現象分析,” 中原大學 (2003)
陳澄何, “蝦蟹殼傳奇,” 科學發展, 369, 62-67 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔