(54.236.58.220) 您好!臺灣時間:2021/03/01 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張英詩
研究生(外文):Ying-Shin Chang
論文名稱:奈米二氧化鈦光催化微粒之合成及其在有機廢水處理應用
論文名稱(外文):Synthesis of Photocatalytic Titania Nanoparticle and Its Application on Organic Wastewater Treatment
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:173
中文關鍵詞:銳鈦礦二氧化鈦奈米微粒凝膠溶膠法光觸媒醋酸金屬觸媒延伸細微結構X光吸收光譜X光吸收邊緣結構光譜
外文關鍵詞:Anatase TiO2NanoparticleSol-gel methodPhotocatalystAcetic acidMetal-doped catalystEXAFSXANES
相關次數:
  • 被引用被引用:7
  • 點閱點閱:338
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
近年來,半導體觸媒的異相光催化反應在環境污染防治的研究上相當廣泛,其中奈米TiO2因具有高活性、化學穩定性、無毒性及容易取得之優點,故應用性極具潛力。因此,本研究之主要目的為奈米銳鈦礦TiO2合成及其在醋酸廢水處理之應用。實驗是以溶膠凝膠法合成的奈米TiO2微粒,經場發掃描式電子顯微鏡(FE-SEM)、X光粉末繞射儀(XRPD)、界面電位(zeta potential)及穿透式電子顯微鏡(TEM)測試結果直徑為5~20 nm銳鈦礦TiO2之結晶結構,經過30天之靜置測試亦不易沉降。在合成實驗中,其影響因子包括pH值、操作溫度、攪拌子以及轉速,其中以pH值為1.5、溫度358 K、2.5 cm攪拌子及轉速1000 rpm的實驗條件為最佳,可得較佳之分散性,晶體顆粒均較小且分佈均勻。
為了探討添加金屬觸媒對奈米anatase-TiO2之催化提升效果,另製作奈米anatase-TiO2、Cu/TiO2、Fe/TiO2及Zn/TiO2薄膜及自行研製的光催化處理批式系統來處理1000 mg/L的醋酸溶液,並以氣相層析儀(GC)、X光光電子光譜儀(XPS)、電子順磁共振光譜儀(EPR)、延伸細微結構X光吸收光譜(EXAFS)及X光吸收邊緣結構光譜(XANES)來觀察其處理醋酸前後之觸媒結構、化合物種類及其光催化之效果比較。由GC之實驗結果得知處理效果依序為2.25 > 4.5 > 9 > 18 g/L TiO2,在添加不同金屬之效果為Cu/TiO2 >Fe/TiO2 >Zn/TiO2 >TiO2 >P-25,奈米anatase-TiO2懸浮微粒之處理效果為1 >2 >3 g/L TiO2。在XPS分析結果顯示,Cu/TiO2為還原觸媒,Cu在催化反應過程中會抓取醋酸中的氧而造成醋酸崩解成CO2和H2O,而Fe/TiO2及Zn/TiO2為氧化觸媒,提供O源去破壞接觸在觸媒表面之有機物。另外,以EXAFS及XANES,來鑑定處理醋酸溶液前後奈米anatase-TiO2、Cu/TiO2、Fe/TiO2及Zn/TiO2薄膜及懸浮微粒之精細結構,由XANES實驗數據分析結果可知奈米anatase-TiO2、Cu/TiO2、Fe/TiO2及Zn/TiO2薄膜經處理醋酸溶液後,並不會改變其價數(Ti4+)及晶型(anatase);由EXAFS之數據中顯示,未經處理醋酸溶液之TiO2懸浮微粒,其O的配位數為3.96 ± 0.05,Ti-O鍵長為1.96 ± 0.01 Å,而Cu/TiO2、Fe/TiO2及Zn/TiO2懸浮微粒,由結構參數顯示添加金屬會造成Ti配位數及鍵長的改變,可證明所添加之金屬可能已嵌入奈米銳鈦礦TiO2的晶體結構。
關鍵詞:銳鈦礦二氧化鈦、奈米微粒、凝膠溶膠法、光觸媒、醋酸、金屬觸媒、延伸細微結構X光吸收光譜、X光吸收邊緣結構光譜。
ABSTRACT
Titanium dioxide has been recognized as an excellent photocatalyst material applied in many fields in the past two decades. Recently, nanopahse TiO2 particles have been also studied due to its high surface area and excellent catalytic activities. Therefore, the optimal sol-gel synthesis, film coating techniques, photocatalytic of acetic acid solution, and identification of the fine structures, morphology or oxidation state for the catalytic anatase-typed TiO2 nanoparticles were investigated in the present work. The optimal synthesis conditions of nanopahse anatase-typed TiO2 photocatalysts included pH = 1.5, T = 358 K, stirrer size of 2.5 cm, and mixing rate of 1000 rpm. The anatase-typed TiO2 nanoparticles ranged of 5-20 nm with well dispersion and narrow particle distribution were measured by field-emission scanning microscopy (Fe-SEM), X-ray powder diffractometer (XRPD), transmission electron microscopy (TEM) or zeta-potential meter.
In order to more thoroughly examine the efficiencies of photocatalysis and the nature of the active species involved in photocatalysis of 1000 mg/L acetic acid solution, the analyses of gas chromatograph (GC), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), X-ray absorption near edge structure (XANES) or extended X-ray absorption fine structure (EXAFS) spectroscopy were performed. The efficiencies of CH3COOH photodegradation for anatase-typed TiO2 nanofilms of different concentrations were 2.25 >4.5 >9.0 >18.0 g/L TiO2(anatase) and for suspended anatase-typed TiO2 nanoparticles were 1 >2 >3 g/L TiO2(anatase). Moreover, the efficiencies of P-25, anatase-typed TiO2, and M-doped TiO2 photocatalysts were Cu >Fe >Zn-doped >anatase >P-25 typed-TiO2 nanoparticles. Thus, one may postulate the possibility that Cu was involved in the abstraction of O atoms in acetic acid molecules in the photodegradation process. In addition, the O sources from Fe2O3 species might enhance the abilities of destroying and removing the organics onto the surface of anatase-typed TiO2 photocatalysts. Comparatively, Cu(0)/TiO2 were reductive nanocatalysts and FeO/- or ZnO/TiO2 nanocatalysts were oxidative ones. By using XANES spectra, the photocatalysts were all Ti (IV). The EXAFS data revealed that the nanophase TiO2 photocatalyst had a central Ti atom of coordination number of 3.96 ± 0.05 primarily Ti-O with bond distances of 1.96 ± 0.01 Å. The insertion of Cu, Fe or Zn ions into TiO2 framework was also observed by the EXAFS data of Cu, Fe, or Zn-doped anatase-typed TiO2 photocatalysts.
Keywords: Anatase TiO2, Nanoparticle, Sol-gel method, Photocatalyst, Acetic acid, Metal-doped catalyst, EXAFS, XANES.
目 錄
摘 要 I
ABSTRACT III
誌 謝 V
目 錄圖 目 錄 VI
圖 目 錄 IX
表 目 錄 XVI
第一章 前言 1
第二章 文獻回顧 4
2.1 光化學觸媒簡介 4
2.1.1 二氧化鈦(TiO2)光催化觸媒之物化特性 4
2.2 奈米光觸媒粒子之特性 9
2.2.1 奈米微粒之特性 9
2.2.2 奈米微粒之應用與製備方法 13
2.2.3 奈米二氧化鈦之特性 16
2.3 二氧化鈦光化學種類及其催化原理 18
'2.3.1 二氧化鈦光化學種類 18
2.3.2 光化學催化反應之原理 19
2.4 影響二氧化鈦光催化反應之因素 22
2.5 二氧化鈦之應用 25
2.5.1 二氧化鈦之環保觸媒應用 25
2.5.2 二氧化鈦薄膜之環保觸媒應用 28
2.5.3 二氧化鈦微結晶粒子的製備及其應用 29
第三章 實驗設備及方法 33
3.1 實驗藥品 33
3.2 實驗儀器 34
3.3 奈米級二氧化鈦懸浮液之製備 35
3.4 奈米級二氧化鈦覆膜之製備 36
3.4.1 奈米二氧化鈦薄膜基材之清洗 37
3.4.2 二氧化鈦薄膜覆膜液之製備 38
3.4.2.1改質的TiO2覆膜液 39
3.4.3 二氧化鈦薄膜之製作 40
3.4.4 光催化反應測試 42
3.5 分析方法 45
3.5.1 X-ray粉末繞射儀及樣品準備 45
3.5.2 場發射掃描式電子顯微鏡 47
3.5.3 穿透式電子顯微鏡與樣品配製 49
3.5.4 氣相層析 52
3.5.5 化學分析電子光譜儀 54
3.5.6 界面電位 56
3.5.6.1 界面電位之測量原理 56
3.5.6.2 粒徑測量原理 58
3.5.7 比表面積 59
3.5.8 紫外-可見光譜 61
3.5.9 電子順磁共振儀(EPR) 62
3.5.10 同步輻射吸收光譜 64
3.5.10.1 同步輻射光吸收實驗 64
3.5.10.2 實驗方法與步驟 66
3.5.10.3 實驗數據分析 67
第四章 結果與討論 69
4.1 奈米二氧化鈦合成之條件 69
4.1.1 反應溫度 69
4.1.1.1 TEM觀察粒子大小 72
4.1.2 pH值 76
4.1.3 轉速影響 81
4.1.4 攪拌子影響 83
4.1.5 煅燒溫度 86
4.1.5.1 比表面積之影響 88
4.2 奈米二氧化鈦薄膜之特性分析 89
4.2.1 奈米二氧化鈦薄膜之FE-SEM分析 89
4.2.2 奈米二氧化鈦改質後薄膜之XPS分析 92
4.3 同步輻射之X光吸收光譜分析 108
4.3.1 X光吸收邊緣結構光譜 108
4.3.2 延伸細微結構X光吸收光譜 124
4.4 EPR分析結果 131
4.5 紫外-可見光譜 132
4.6 奈米二氧化鈦薄膜光催化實驗 135
4.6.1 奈米二氧化鈦薄膜光催化效果之比較 135
4.6.2 奈米二氧化鈦光催化之一階反應速率常數 149
第五章 結論及未來研究方向 156
5.1 結論 156
5.2 未來研究方向 159
參考文獻 160
附錄A XPS之全譜圖 174
附錄B 同步輻射光譜 178
1. Legrini O., Oliveros E., and Braun A. M., Photochemical processes for water treatment, Chem. Rev., 93(2), 671-698 (1993).
2. Linsebigler A. L., Lu G., and Yates J. T., Photocatalysis on TiO2 surface: principles, mechanisms, and selected results, Chem. Rev., 95(3), 735-758 (1995).
3. Van de Leest R. E., UV photo-annealing of thin sol-gel films, Appl. Surf. Sci., 86(1-4), 278-285 (1995).
4. Kominami H., Kumamoto H., Kera Y., and Ohtani B., Immobilization of highly active titanium (IV) oxide particles: A novel strategy of preparation of transparent photocatalytic coatings, Applied Catalysis B: Environmental, 30(4), 329-335 (2001).
5. Shephard G. S., Stockenstrom S., de Villiers D., Engelbrecht W. J, and Wessels G. F. S., Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst, Water Res., 36(2), 140-146 (2002).
6. Tarr M. A., Wang W., Bianch T. S., and Engelhaupt E., Mechanisms of ammonia and amino acid photoproduction from aquatic humic and colloidal matter, Water Res., 35(15), 3688-3696 (2002).
7. Obuchi E., Sakamoto T., and Nakano K., Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst, Chem. Engr. Sci., 54, 1525-1530 (1999).
8. An Y. J., Jeoung S. W., and Carraway E. R., Research note micellar effect on the photolysis of hydrogen peroxide, Wat. Res., 35(13), 3276-3279 (2001).
9. Vohra M. S. and Tanaka K., Photocatalytic degradation of aqueous pollutants using silica-modified TiO2, Water Res., 36(16), 3992-3996 (2002).
10. Héquet V., Gonzalez C., and Cloirec P. L., Photochemical processes for atrazine degradation: methodological approach, Water Res., 35(18), 4253-4260 (2001).
11. Doong R. A., and Chang W. H., Photodegradation of parathion in aqueous titanium dioxide and zero valent iron solutions in the presence of hydrogen peroxide, J. Photochem. A: Chem., 116(3), 221-228 (1998).
12. Parkinson A., Barry M. J., Roddick F. A., and Hobday M. D., Preliminary toxicity assessment of water after treatment with UV-irradiation and UVC/H2O2, Water Res., 35(15), 3656-3664 (2001).
13. Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc, 114(27), 10834-10843 (1992).
14. 張立德、牟季美,「奈米材料和奈米結構」,滄海書局(2002)。
15. 吳國卿、董玉蘭,「奈米粒子材料的觸媒性質」,化工資訊,13,42-46 (1999)。
16. 陳郁文,「奈米材料在觸媒上的運用」,化工,5(5),21-25 (1998)。
17. 莊萬發編撰,「超微粒子理論應用」,復漢出版社(1995)。
18. 蘇品書,「超微粒子材料技術」,復漢出版社(2001)。
19. 曾茂盛、關長斌、徐甲強,「奈米材料導論」,學富文化,19~21 (2002)。
20. 羅益興、丁晴,「奈米觸媒的製備與應用─2001材料奈米技術專刊」,工業技術研究院,134~139 (2001)。
21. 林正良,「化學工業科技人才培訓計畫─介面化學工業技術人才培訓:電子科技用介面化學應用原理(一)」,經濟部工業局(2002)。
22. Babcock J. R., Zehner R. W. , Sita L. R., A heterocumulene metathesis route to Cd[ESiMe3]2 and passivated CdE (E = S and Se) nanocrystals, Chem. of Mate., 10(8), 2027-2029 (1998).
23. 陳鎮華,「逆微胞系統中製備超微粒子之研究」,碩士論文,國立成功大學化學工程研究所(1997)。
24. 龐文琴,「超微細材料的製備─超微細材料與觸媒研討會論文集」,19-22 (1996)。
25. 史宗淮,「微粉製程技術簡介」,化工,42(6),28-33 (1995)。
26. John D. W. and Sommerdijk N. A. J. M., Sol-gel materials chemistry and applications, Gordon and Breach Science Publishers (2001).
27. Perez J. A. L., Quintela M. A. L., Mira J., Rivas J., and Charles S. W., Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method, J. Phys. Chem. B, 101(41), 8045-8047 (1997).
28. Hoffmann M. R., Martin S. T., Choi W., and Bahnemann D. W., Environmental applications of semiconductor photocatalysis, Chem. Rev., 95(1), 69-96 (1995).
29. Zhang Z., Wang C.-C.; Zakaria R., and Ying J. Y., Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B., 102(52), 10871-10878 (1998).
30. Andersson M., Osterlund L., Ljungstrom S., and Palmqvist A., Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B., 106(41), 10674-10679 (2002).
31. Koningsberger D. C. and Prins R., X-Ray Absorption- Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (1st Edn), p. 3. John Wiley & Sons, New York (1988).
32. Vlaic G., Andreatta D., and Colavita P. E., Characterisation of heterogeneous catalysts by EXAFS, Catal. Today, 41(1-3), 261-275 (1998).
33. Conradson S. D., Application of X-ray absorption fine structure spectroscopy to materials and environmental science, Appl. Spectrosc., 52(7), 252A-279A (1998).
34. Torok S. B., Labar J., Schmelling M., and Van Grieken R. E., X-ray spectrometry, Anal. Chem., 70(12), 495R-517R (1998).
35. Binsted N., Pack M. J., Weller M. T., and Evans J., Combined EXAFS and powder diffraction analysis, J. Am. Chem. Soc., 118(42), 10200-10210 (1996).
36. 李志甫,”光吸收光譜術在觸媒特性分析上的應用”,化學,53(3), 280-293 (1995).
37. Lin Kuen-Song, Wang H. Paul, Wei Y.-L., and Chien Yi-Chi, EXAFS studies of copper species in ash of printed circuit board wastes, The Fifteenth International Conference on Solid Waste Technology and Management, Management of Specific Wastes 1B, Philadelphia, PA, USA (Dec. 12-15, 1999).
38. Malato S., Blanco J., Richter C., Braun B., and Maldonado M. I., Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species, Appl. Cata. B: Environ., 17(4), 347-356.
39. Ohko Y., Tryk D. A., Hashimoto K., and Fujishima A., Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination, J. Phys. Chem. B., 102(15), 2699-2704 (1998).
40. Kumar K. N. P., Kumar J., and Keizer K., Effect of peptization on densification and phase transformation behavior of sol-gel-derived nanostructured titania, J. Am. Ceram. Soc., 77, 1396-1400 (1994).
41. So W. W., Park S. B., Kim K. J., Moon S. J., Phase transformation behavior at low temperature n hydrothermal treatment of stable and unstable titania sol, J. Colloid and Interface Sci., 191, 398-406 (1997).
42. Hague D. C. and Mayo M. J., Controlling crystallinity during processing of nanocrystalline titania, J. Am. Ceram. Soc., 77, 1957-1960 (1994).
43. Zhu Y., Liu T., and Ding C., Structural xharacterization of TiO2 ultrafine particles, J. Mater. Res., 14(2), 442-446 (1999).
44. Thieme M. and Schuth F., Preparation of a mesoporous high surface area titanium oxo phosphate via a non-ionic surfactant route, Microporous Mesoporous Mater., 27(2-3), 193-200 (1999).
45. Yasumori A., Ishizu K., Hayashi S., and Okada K., Preparation of a TiO2 based multiple layer thin film photocatalyst, J. Mater. Res., 14(2), 442-446 (1999).
46. Kasuga T., Hiramatsu M., Hirano M., and Hoson A., Preparation TiO2-based powders with high photocatalytic activities, J. Mater. Res., 12(3), 607-609 (1997).
47. Herrmann J. M., Tahiri H., Ichou Y. A., Lassaletta G., Gonzale A. R., and Fernandez E. A., Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coating on quartz, Appl. Catal. B: Environ., 13(3-4), 219-228 (1997).
48. Sclafani A., Mozzanega M. N., and Herrmann J. M., Influence of silver deposits on the photocatalytic activity of titania, J. Catal., 168(1), 117-120 (1997).
49. Driessen M. D. and Grassian V. H., Photooxidation of trichloroethylene on Pt/TiO2, J. Phys. Chem. B, 102(8), 1418-1423 (1998).
50. Eqling G. A. and Lin C., Investigation of retardation effects on the titanium dioxide photodegradation system, Chemosphere, 27(1), 1-8 (2001).
51. Eqling G. A. and Lin C., Photoassisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere, 29(1), 1-10 (2001).
52. Marques C., Alves E., McHargue C., Ononye L. C., Monteiro T., Soares J., and Allard L. F., Influence of annealing atmosphere on the behavior of titanium implanted sapphire, Nucl. Instrum. Methods Phys. Res. Sect. B, 191(1-4), 644-648 (2002).
53. Zhang R. and Gao L., Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles, Mater. Res. Bull., 37(9), 1659-1666 (2002).
54. Xia J., Dong H., and Tom B., Surface properties of a g-based titanium aluminide at elevated temperatures, Intermetallics, 10(7), 723-729 (2002).
55. Schimpf S., Lucas M., Mohr C., Rodemerck U., Brückner A., Radnik J., Hofmeister H., and Claus P., Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today, 72(1-2), 63-78 (2002).
56. Ruys A. J. and Mai Y. W., The nanoparticle-coating process: a potential sol-gel route to homogeneous nanocomposites, Mater. Sci. Eng. A, 265(1-2), 202-207 (1999).
57. Ryu J. and Choi W., Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides, Environ. Sci. Technol., 38(10), 2928-2933 (2004).
58. Nosaka Y., Koenuma K., Ushida K., and Kira A., Reaction mechanism of the decomposition of acetic acid on illuminated TiO2 powder studied by means of in-situ electron spin resonance measurements, Langmuir, 12(3), 736-738 (1996).
59. Kraeutler B. and Bard A. J., heterogeneous photocatalytic synthesis of mrthane from acetic acid-new Kolbe reaction pathway, J. Am. Chem. Soc., 100(7), 2239-2240 (1978).
60. Heintz O., Robert D., and Weber J. V., Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol A, 135(1), 77-80 (2000).
61. Hwang S. J. and Raftery D., In-situ solid-state NMR studies of ethanol photocatalysis: characterization of surface sites and their reactivities, Catal. Today, 49(4), 353-361 (1999).
62. Guillard C., Photocatalytic degradation of butanoic acid influence of its ionization state on the degradation pathway: comparison with O3/UV process, J. Photochem. Photobiol A, 135(1), 65-75 (2000).
63. Tanner R. E., Liang Y., and Altman E. I., Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2 (001), Surf. Sci., 506(3), 251-271 (2002).
64. Kim K. M., Park N. G., Ryu K. S., and Chang S. H., Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles, Polymer, 43(14), 3951-3957 (2002).
65. Bowker M., Stone P., Bennett R., and Perkins N., CO adsorption on a Pd/TiO2 (110) model catalyst, Surf. Sci., 497(1-3), 155-165 (2002).
66. Bowker M., Stone P., Bennett R., and Perkins N., Formic acid adsorption and decomposition on TiO2 (110) and on Pd/TiO2(110) model catalysts, Surf. Sci., 511(1-3), 435-448 (2002).
67. Boccuzzi F., Chiorino A., and Manzoli M., FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania, Surf. Sci., 454-456, 942-946 (2000).
68. Berkó A., Hakkel O., Szőkő J., and Solymosi F., Thermally induced formation of vacancy-islands on the atomic terraces of TiO2 (110) surface covered by Pt, Surf. Sci., 507-510, 643-648 (2002).
69. Ray J. C., Panda A. B., and Pramanik P., Chemical synthesis of nanocrystals of tantalum ion-doped tetragonal zirconia, Mater. Lett., 53(3), 145-150 (2002).
70. Schimpf S., Lucas M., Mohr C., Rodemerck U., Brückner A., Radnik J., Hofmeister H., and Claus P., Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today, 72(1-2), 63-78 (2002).
71. Ruys A. J. and Mai Y. W., The nanoparticle-coating process:a potential sol-gel route to homogeneous nanocomposites, Mater. Sci. Eng. A, 265(1-2), 202-207 (1999).
72. Shivalingappa L., Sheng J., and Fukami T., Photocatalytic effect in platinum doped titanium dioxide films, Vacuum, 48(5), 413-416 (1997).
73. Nosaka Y., Koenuma K., Ushida K., and Kira A., Reaction mechanism of the decomposition of acetic acid on illuminated TiO2 powder studied by means of in-situ electron spin resonance measurements, Langmuir, 12(3), 736-738 (1996).
74. Kraeutler B. and Bard A. J., heterogeneous photocatalytic synthesis of mrthane from acetic acid-new Kolbe reaction pathway, J. Am. Chem. Soc., 100(7), 2239-2240 (1978).
75. Zhang D., Wang W., Liu Y., Xiao X., Zhao W., Zhang B., Cao Y., Photosensitization of nanocrystalline TiO2 electrodes by squarylium cyanine incorporated with a ruthenium bipyridyl complex, J. Photochem. Photobiol A, 135(2-3), 235-240 (2000).
76. Rong W., Sakai N., Fujishima A., Watanabe T., and Hashimoto K., Studies of surface wettability conversion on TiO2 single-crystal surface, J. Phys. Chem. B, 103(12), 2188-2194 (1999).
77. Herman G. S., Dohnálek Z., Ruzycki N., and Diebold U., Experimental investigation of the interaction of water methanol with anatase —TiO2(101), J. Phys. Chem. B, 107(12), 2788-2795 (2003).
78. Calzado C. J., San Miguel M. A., and Sanz J. F., Theoretical analysis of K adsorption on TiO2(110) rutile surface, J. Phys. Chem. B, 103(3), 480-486 (1999).
79. Tanaka K., Robledo S. M., Hisanaga T., Ali R., Ramli Z., and Bakar W. A., Photocatalytic degradation of 3,4-xylyl N-methylcarbamate (MPMC) and other carbamate pesticides in aqueous TiO2 suspensions, J. Mol. Catal. A: Chem., 144(3), 425-430 (1999).
80. Chen J. C., Ollis D. F., Rulkens W. H., and Bruning H., Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): photocatalytic activity and pH influence, Water Res., 33(3), 661-668 (1999).
81. Bae E. and Choi W., Highly enhanced photoreductive degradation of perchlorinated compounds on Dye-Sensitized Metal/TiO2 under visible light, Environ. Sci. Technol, 37(1), 147-152(2003).
82. Chen C., Zhao W., Li J., Zhao J., Hidaka H., and Serpone N., Formation and identification of intermediates in the visible-light-assisted photodegradation of Sulforhodamine-B Dye in aqueous TiO2 dispersion, Environ. Sci. Technol., 36(16), 3604-3611 (2002).
83. Klosek S. and Raftery D., Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, J. Phys. Chem. B., 105(14), 2815-2819 (2001).
84. Li X., Chen C., and Zhao J., Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible lightirradiation, Langmuir, 17(13), 4118-4122 (2001).
85. Li X. Z. and Li F. B., Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35(11), 2381-2387 (2001).
86. Cho Y., Choi W., Lee C.-H., Hyeo, T., and Lee H.-I., Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2, Environ. Sci. Technol., 35(5), 966-970(2001).
87. Choi W., Hong S. J., Chang Y.-S., and Cho Y., Photocatalytic degradation of polychlorinated dibenzo-ρ-dioxins on TiO2 film under UV or solar light irradiation, Environ. Sci. Technol., 34(22), 4810-4815 (2000).
88. Wu T., Lin T., Zhao J., Hidaka H., and Serpone N.,TiO2-Assisted photodegradation of dyes. 9. photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation, Environ. Sci. Technol., 33(9), 1379-1387 (1999).
89. Liu G., Wu T., Zhao J., Hidaka H., and Serpone N., Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions, Environ. Sci. Technol., 33(12), 2081-2087 (1999).
90. Wu T., Liu G., Zhao J., Hidaka H., and Serpone, N., Evidence for H2O2 generation during the TiO2-Assisted photodegradation of dyes in aqueous dispersions under visible light illumination, J. Phys. Chem. B., 103(23), 4862-4867 (1999).
91. Vohra M. S. and Tanaka K., Photocatalytic degradation of nitrotoluene in aqueous TiO2 suspension, Water. Res., 36(1), 59-64 (2002).
92. Guo Y., Hu C., Jiang S., Guo C., Yang Y., and Wang E., Heterogeneous photodegradation of aqueous hydroxy butanedioic acid by microporous polyoxometalates, Appl. Catal. B: Environ., 36(1), 9-17 (2002).
93. Ashokkumar M., Kudo A., Saito N., and Sakata T., Semiconductor sensitization by RuS2 colloids on TiO2 electrodes, Chem. Phys. Lett., 229(4-5), 383 —392 (1994).
94. Mathews R. W., Photocatalytic oxidation of chlorobenzene in aqueous suspension of titanium dioxide, J. Catal., 97(10), 565-568 (1986).
95. Inoue Y., Kubokawa T., and Sato K., Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water, J. Phys. Chem., 95(10), 4059-4063 (1991).
96. Kiwi J. and Marrison C., Heterogeneous photocatalysis: dynamics of charge transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet irradiation, J. Phys. Chem., 88(25), 6146-6152 (1984).
97. Hu L., Yoko T., Kozuka H., and Sakka S., Effect of solvent on properties of sol-gel-derived TiO2 coating films, Thin Solid Films, 219, 18-23 (1992).
98. Grunert W., Bruckner A., Hofmeister H., and Claus P., Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation, J. Phys. Chem. B., 108(18), 5709-5717 (2004).
99. Khalil K. M. S., Baird T., Zaki M. I., Ei-Samahy A. A., and Awad A. M., Synthesis and characterization of catalytic titania via hydrolysis of titanium(VI) isopropoxide, Colloids Surf. A, 132, 31-44 (1998).
100. Narayana M., Contarini S., and Kevan L., X-Ray photoelectron and electron spin resonance spectroscopic studies of Cu-NaY Zeolites, J. Catal. 94, 370-375 (1985).
101. Boujday S., Wünsch F., Portes P., Bocquet J.-F., and Christophe C.-J., Photocatalytic and electronic properties of TiO2 powders elaborated by sol—gel route and supercritical dryings, Solar Energy Materials and Solar Cell, 83(4), 421-433 (2004).
102. Chusuei C. C., Brookshier M. A., and Goodman D. W., Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size, Langmuir, 15(8), 2806-2808 (1999).
103. Bioschoff B. L. and Anderson M. A., peptization process in the sol-gel preparation of porous anatase (TiO2), Chem. Mater., 7(10), 1772-1778 (1995).
104. 梁乃允,〝納米二氧化鈦透明結晶膜之製作及光催化應用〞,國立中央大學化學工程研究所碩士論文,88年6月。
105. 洪伯瑜、邱振銘、曾崇明和蘇昌瑾,〝溶膠凝膠法製備二氧化鈦與其催化性質的分析〞,化學,61(3),445-454 (2003)。
106. 陳弘穎,〝控制氣氛下退火對銅基材上氮化鈦鍍膜微結構之影響〞,國立中興大學材料工程研究所碩士論文,87年6月。
107. Gao X., and Wachs I. E, Titania—silica as catalysts: molecular structural characteristics and physico-chemical properties, Catal. Today, 51(2), 233-254 (1999).
108. Feng L., Liu Y., and Hu J., Molecularly imprinted TiO2 thin film by liquid phase deposition for the determination of L-Glutamic Acid, Langmuir, 20(5), 1786-1790 (2004).
109. Yuan Z.-h., Jia J.-h., and Zhang L.-d., Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation., Mater. Chem. and Phys., 73(2-3), 323-326 (2002).
110. Larsson P.-O., Andersson A., and Wallenberg L. R., Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide, J. Catal., 163(2), 279-293 (1996).
111. Sato S., Ueda K., Kawasaki Y., and Nakamura R., In Situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO2 films, J. Phys. Chem. B., 106(35), 9054-9058 (2002).
112. Jin S. and Shiraishi F., Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide, Chem. Eng. J., 97(2-3), 203-211 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔