1. Legrini O., Oliveros E., and Braun A. M., Photochemical processes for water treatment, Chem. Rev., 93(2), 671-698 (1993).
2. Linsebigler A. L., Lu G., and Yates J. T., Photocatalysis on TiO2 surface: principles, mechanisms, and selected results, Chem. Rev., 95(3), 735-758 (1995).
3. Van de Leest R. E., UV photo-annealing of thin sol-gel films, Appl. Surf. Sci., 86(1-4), 278-285 (1995).
4. Kominami H., Kumamoto H., Kera Y., and Ohtani B., Immobilization of highly active titanium (IV) oxide particles: A novel strategy of preparation of transparent photocatalytic coatings, Applied Catalysis B: Environmental, 30(4), 329-335 (2001).
5. Shephard G. S., Stockenstrom S., de Villiers D., Engelbrecht W. J, and Wessels G. F. S., Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst, Water Res., 36(2), 140-146 (2002).
6. Tarr M. A., Wang W., Bianch T. S., and Engelhaupt E., Mechanisms of ammonia and amino acid photoproduction from aquatic humic and colloidal matter, Water Res., 35(15), 3688-3696 (2002).
7. Obuchi E., Sakamoto T., and Nakano K., Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst, Chem. Engr. Sci., 54, 1525-1530 (1999).
8. An Y. J., Jeoung S. W., and Carraway E. R., Research note micellar effect on the photolysis of hydrogen peroxide, Wat. Res., 35(13), 3276-3279 (2001).
9. Vohra M. S. and Tanaka K., Photocatalytic degradation of aqueous pollutants using silica-modified TiO2, Water Res., 36(16), 3992-3996 (2002).
10. Héquet V., Gonzalez C., and Cloirec P. L., Photochemical processes for atrazine degradation: methodological approach, Water Res., 35(18), 4253-4260 (2001).
11. Doong R. A., and Chang W. H., Photodegradation of parathion in aqueous titanium dioxide and zero valent iron solutions in the presence of hydrogen peroxide, J. Photochem. A: Chem., 116(3), 221-228 (1998).
12. Parkinson A., Barry M. J., Roddick F. A., and Hobday M. D., Preliminary toxicity assessment of water after treatment with UV-irradiation and UVC/H2O2, Water Res., 35(15), 3656-3664 (2001).
13. Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc, 114(27), 10834-10843 (1992).
14. 張立德、牟季美,「奈米材料和奈米結構」,滄海書局(2002)。
15. 吳國卿、董玉蘭,「奈米粒子材料的觸媒性質」,化工資訊,13,42-46 (1999)。
16. 陳郁文,「奈米材料在觸媒上的運用」,化工,5(5),21-25 (1998)。17. 莊萬發編撰,「超微粒子理論應用」,復漢出版社(1995)。
18. 蘇品書,「超微粒子材料技術」,復漢出版社(2001)。
19. 曾茂盛、關長斌、徐甲強,「奈米材料導論」,學富文化,19~21 (2002)。
20. 羅益興、丁晴,「奈米觸媒的製備與應用─2001材料奈米技術專刊」,工業技術研究院,134~139 (2001)。
21. 林正良,「化學工業科技人才培訓計畫─介面化學工業技術人才培訓:電子科技用介面化學應用原理(一)」,經濟部工業局(2002)。
22. Babcock J. R., Zehner R. W. , Sita L. R., A heterocumulene metathesis route to Cd[ESiMe3]2 and passivated CdE (E = S and Se) nanocrystals, Chem. of Mate., 10(8), 2027-2029 (1998).
23. 陳鎮華,「逆微胞系統中製備超微粒子之研究」,碩士論文,國立成功大學化學工程研究所(1997)。24. 龐文琴,「超微細材料的製備─超微細材料與觸媒研討會論文集」,19-22 (1996)。
25. 史宗淮,「微粉製程技術簡介」,化工,42(6),28-33 (1995)。26. John D. W. and Sommerdijk N. A. J. M., Sol-gel materials chemistry and applications, Gordon and Breach Science Publishers (2001).
27. Perez J. A. L., Quintela M. A. L., Mira J., Rivas J., and Charles S. W., Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method, J. Phys. Chem. B, 101(41), 8045-8047 (1997).
28. Hoffmann M. R., Martin S. T., Choi W., and Bahnemann D. W., Environmental applications of semiconductor photocatalysis, Chem. Rev., 95(1), 69-96 (1995).
29. Zhang Z., Wang C.-C.; Zakaria R., and Ying J. Y., Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B., 102(52), 10871-10878 (1998).
30. Andersson M., Osterlund L., Ljungstrom S., and Palmqvist A., Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B., 106(41), 10674-10679 (2002).
31. Koningsberger D. C. and Prins R., X-Ray Absorption- Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (1st Edn), p. 3. John Wiley & Sons, New York (1988).
32. Vlaic G., Andreatta D., and Colavita P. E., Characterisation of heterogeneous catalysts by EXAFS, Catal. Today, 41(1-3), 261-275 (1998).
33. Conradson S. D., Application of X-ray absorption fine structure spectroscopy to materials and environmental science, Appl. Spectrosc., 52(7), 252A-279A (1998).
34. Torok S. B., Labar J., Schmelling M., and Van Grieken R. E., X-ray spectrometry, Anal. Chem., 70(12), 495R-517R (1998).
35. Binsted N., Pack M. J., Weller M. T., and Evans J., Combined EXAFS and powder diffraction analysis, J. Am. Chem. Soc., 118(42), 10200-10210 (1996).
36. 李志甫,”光吸收光譜術在觸媒特性分析上的應用”,化學,53(3), 280-293 (1995).37. Lin Kuen-Song, Wang H. Paul, Wei Y.-L., and Chien Yi-Chi, EXAFS studies of copper species in ash of printed circuit board wastes, The Fifteenth International Conference on Solid Waste Technology and Management, Management of Specific Wastes 1B, Philadelphia, PA, USA (Dec. 12-15, 1999).
38. Malato S., Blanco J., Richter C., Braun B., and Maldonado M. I., Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species, Appl. Cata. B: Environ., 17(4), 347-356.
39. Ohko Y., Tryk D. A., Hashimoto K., and Fujishima A., Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination, J. Phys. Chem. B., 102(15), 2699-2704 (1998).
40. Kumar K. N. P., Kumar J., and Keizer K., Effect of peptization on densification and phase transformation behavior of sol-gel-derived nanostructured titania, J. Am. Ceram. Soc., 77, 1396-1400 (1994).
41. So W. W., Park S. B., Kim K. J., Moon S. J., Phase transformation behavior at low temperature n hydrothermal treatment of stable and unstable titania sol, J. Colloid and Interface Sci., 191, 398-406 (1997).
42. Hague D. C. and Mayo M. J., Controlling crystallinity during processing of nanocrystalline titania, J. Am. Ceram. Soc., 77, 1957-1960 (1994).
43. Zhu Y., Liu T., and Ding C., Structural xharacterization of TiO2 ultrafine particles, J. Mater. Res., 14(2), 442-446 (1999).
44. Thieme M. and Schuth F., Preparation of a mesoporous high surface area titanium oxo phosphate via a non-ionic surfactant route, Microporous Mesoporous Mater., 27(2-3), 193-200 (1999).
45. Yasumori A., Ishizu K., Hayashi S., and Okada K., Preparation of a TiO2 based multiple layer thin film photocatalyst, J. Mater. Res., 14(2), 442-446 (1999).
46. Kasuga T., Hiramatsu M., Hirano M., and Hoson A., Preparation TiO2-based powders with high photocatalytic activities, J. Mater. Res., 12(3), 607-609 (1997).
47. Herrmann J. M., Tahiri H., Ichou Y. A., Lassaletta G., Gonzale A. R., and Fernandez E. A., Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coating on quartz, Appl. Catal. B: Environ., 13(3-4), 219-228 (1997).
48. Sclafani A., Mozzanega M. N., and Herrmann J. M., Influence of silver deposits on the photocatalytic activity of titania, J. Catal., 168(1), 117-120 (1997).
49. Driessen M. D. and Grassian V. H., Photooxidation of trichloroethylene on Pt/TiO2, J. Phys. Chem. B, 102(8), 1418-1423 (1998).
50. Eqling G. A. and Lin C., Investigation of retardation effects on the titanium dioxide photodegradation system, Chemosphere, 27(1), 1-8 (2001).
51. Eqling G. A. and Lin C., Photoassisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere, 29(1), 1-10 (2001).
52. Marques C., Alves E., McHargue C., Ononye L. C., Monteiro T., Soares J., and Allard L. F., Influence of annealing atmosphere on the behavior of titanium implanted sapphire, Nucl. Instrum. Methods Phys. Res. Sect. B, 191(1-4), 644-648 (2002).
53. Zhang R. and Gao L., Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles, Mater. Res. Bull., 37(9), 1659-1666 (2002).
54. Xia J., Dong H., and Tom B., Surface properties of a g-based titanium aluminide at elevated temperatures, Intermetallics, 10(7), 723-729 (2002).
55. Schimpf S., Lucas M., Mohr C., Rodemerck U., Brückner A., Radnik J., Hofmeister H., and Claus P., Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today, 72(1-2), 63-78 (2002).
56. Ruys A. J. and Mai Y. W., The nanoparticle-coating process: a potential sol-gel route to homogeneous nanocomposites, Mater. Sci. Eng. A, 265(1-2), 202-207 (1999).
57. Ryu J. and Choi W., Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides, Environ. Sci. Technol., 38(10), 2928-2933 (2004).
58. Nosaka Y., Koenuma K., Ushida K., and Kira A., Reaction mechanism of the decomposition of acetic acid on illuminated TiO2 powder studied by means of in-situ electron spin resonance measurements, Langmuir, 12(3), 736-738 (1996).
59. Kraeutler B. and Bard A. J., heterogeneous photocatalytic synthesis of mrthane from acetic acid-new Kolbe reaction pathway, J. Am. Chem. Soc., 100(7), 2239-2240 (1978).
60. Heintz O., Robert D., and Weber J. V., Comparison of the degradation of benzamide and acetic acid on different TiO2 photocatalysts, J. Photochem. Photobiol A, 135(1), 77-80 (2000).
61. Hwang S. J. and Raftery D., In-situ solid-state NMR studies of ethanol photocatalysis: characterization of surface sites and their reactivities, Catal. Today, 49(4), 353-361 (1999).
62. Guillard C., Photocatalytic degradation of butanoic acid influence of its ionization state on the degradation pathway: comparison with O3/UV process, J. Photochem. Photobiol A, 135(1), 65-75 (2000).
63. Tanner R. E., Liang Y., and Altman E. I., Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2 (001), Surf. Sci., 506(3), 251-271 (2002).
64. Kim K. M., Park N. G., Ryu K. S., and Chang S. H., Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles, Polymer, 43(14), 3951-3957 (2002).
65. Bowker M., Stone P., Bennett R., and Perkins N., CO adsorption on a Pd/TiO2 (110) model catalyst, Surf. Sci., 497(1-3), 155-165 (2002).
66. Bowker M., Stone P., Bennett R., and Perkins N., Formic acid adsorption and decomposition on TiO2 (110) and on Pd/TiO2(110) model catalysts, Surf. Sci., 511(1-3), 435-448 (2002).
67. Boccuzzi F., Chiorino A., and Manzoli M., FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania, Surf. Sci., 454-456, 942-946 (2000).
68. Berkó A., Hakkel O., Szőkő J., and Solymosi F., Thermally induced formation of vacancy-islands on the atomic terraces of TiO2 (110) surface covered by Pt, Surf. Sci., 507-510, 643-648 (2002).
69. Ray J. C., Panda A. B., and Pramanik P., Chemical synthesis of nanocrystals of tantalum ion-doped tetragonal zirconia, Mater. Lett., 53(3), 145-150 (2002).
70. Schimpf S., Lucas M., Mohr C., Rodemerck U., Brückner A., Radnik J., Hofmeister H., and Claus P., Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today, 72(1-2), 63-78 (2002).
71. Ruys A. J. and Mai Y. W., The nanoparticle-coating process:a potential sol-gel route to homogeneous nanocomposites, Mater. Sci. Eng. A, 265(1-2), 202-207 (1999).
72. Shivalingappa L., Sheng J., and Fukami T., Photocatalytic effect in platinum doped titanium dioxide films, Vacuum, 48(5), 413-416 (1997).
73. Nosaka Y., Koenuma K., Ushida K., and Kira A., Reaction mechanism of the decomposition of acetic acid on illuminated TiO2 powder studied by means of in-situ electron spin resonance measurements, Langmuir, 12(3), 736-738 (1996).
74. Kraeutler B. and Bard A. J., heterogeneous photocatalytic synthesis of mrthane from acetic acid-new Kolbe reaction pathway, J. Am. Chem. Soc., 100(7), 2239-2240 (1978).
75. Zhang D., Wang W., Liu Y., Xiao X., Zhao W., Zhang B., Cao Y., Photosensitization of nanocrystalline TiO2 electrodes by squarylium cyanine incorporated with a ruthenium bipyridyl complex, J. Photochem. Photobiol A, 135(2-3), 235-240 (2000).
76. Rong W., Sakai N., Fujishima A., Watanabe T., and Hashimoto K., Studies of surface wettability conversion on TiO2 single-crystal surface, J. Phys. Chem. B, 103(12), 2188-2194 (1999).
77. Herman G. S., Dohnálek Z., Ruzycki N., and Diebold U., Experimental investigation of the interaction of water methanol with anatase —TiO2(101), J. Phys. Chem. B, 107(12), 2788-2795 (2003).
78. Calzado C. J., San Miguel M. A., and Sanz J. F., Theoretical analysis of K adsorption on TiO2(110) rutile surface, J. Phys. Chem. B, 103(3), 480-486 (1999).
79. Tanaka K., Robledo S. M., Hisanaga T., Ali R., Ramli Z., and Bakar W. A., Photocatalytic degradation of 3,4-xylyl N-methylcarbamate (MPMC) and other carbamate pesticides in aqueous TiO2 suspensions, J. Mol. Catal. A: Chem., 144(3), 425-430 (1999).
80. Chen J. C., Ollis D. F., Rulkens W. H., and Bruning H., Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): photocatalytic activity and pH influence, Water Res., 33(3), 661-668 (1999).
81. Bae E. and Choi W., Highly enhanced photoreductive degradation of perchlorinated compounds on Dye-Sensitized Metal/TiO2 under visible light, Environ. Sci. Technol, 37(1), 147-152(2003).
82. Chen C., Zhao W., Li J., Zhao J., Hidaka H., and Serpone N., Formation and identification of intermediates in the visible-light-assisted photodegradation of Sulforhodamine-B Dye in aqueous TiO2 dispersion, Environ. Sci. Technol., 36(16), 3604-3611 (2002).
83. Klosek S. and Raftery D., Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, J. Phys. Chem. B., 105(14), 2815-2819 (2001).
84. Li X., Chen C., and Zhao J., Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible lightirradiation, Langmuir, 17(13), 4118-4122 (2001).
85. Li X. Z. and Li F. B., Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35(11), 2381-2387 (2001).
86. Cho Y., Choi W., Lee C.-H., Hyeo, T., and Lee H.-I., Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2, Environ. Sci. Technol., 35(5), 966-970(2001).
87. Choi W., Hong S. J., Chang Y.-S., and Cho Y., Photocatalytic degradation of polychlorinated dibenzo-ρ-dioxins on TiO2 film under UV or solar light irradiation, Environ. Sci. Technol., 34(22), 4810-4815 (2000).
88. Wu T., Lin T., Zhao J., Hidaka H., and Serpone N.,TiO2-Assisted photodegradation of dyes. 9. photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation, Environ. Sci. Technol., 33(9), 1379-1387 (1999).
89. Liu G., Wu T., Zhao J., Hidaka H., and Serpone N., Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions, Environ. Sci. Technol., 33(12), 2081-2087 (1999).
90. Wu T., Liu G., Zhao J., Hidaka H., and Serpone, N., Evidence for H2O2 generation during the TiO2-Assisted photodegradation of dyes in aqueous dispersions under visible light illumination, J. Phys. Chem. B., 103(23), 4862-4867 (1999).
91. Vohra M. S. and Tanaka K., Photocatalytic degradation of nitrotoluene in aqueous TiO2 suspension, Water. Res., 36(1), 59-64 (2002).
92. Guo Y., Hu C., Jiang S., Guo C., Yang Y., and Wang E., Heterogeneous photodegradation of aqueous hydroxy butanedioic acid by microporous polyoxometalates, Appl. Catal. B: Environ., 36(1), 9-17 (2002).
93. Ashokkumar M., Kudo A., Saito N., and Sakata T., Semiconductor sensitization by RuS2 colloids on TiO2 electrodes, Chem. Phys. Lett., 229(4-5), 383 —392 (1994).
94. Mathews R. W., Photocatalytic oxidation of chlorobenzene in aqueous suspension of titanium dioxide, J. Catal., 97(10), 565-568 (1986).
95. Inoue Y., Kubokawa T., and Sato K., Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water, J. Phys. Chem., 95(10), 4059-4063 (1991).
96. Kiwi J. and Marrison C., Heterogeneous photocatalysis: dynamics of charge transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet irradiation, J. Phys. Chem., 88(25), 6146-6152 (1984).
97. Hu L., Yoko T., Kozuka H., and Sakka S., Effect of solvent on properties of sol-gel-derived TiO2 coating films, Thin Solid Films, 219, 18-23 (1992).
98. Grunert W., Bruckner A., Hofmeister H., and Claus P., Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation, J. Phys. Chem. B., 108(18), 5709-5717 (2004).
99. Khalil K. M. S., Baird T., Zaki M. I., Ei-Samahy A. A., and Awad A. M., Synthesis and characterization of catalytic titania via hydrolysis of titanium(VI) isopropoxide, Colloids Surf. A, 132, 31-44 (1998).
100. Narayana M., Contarini S., and Kevan L., X-Ray photoelectron and electron spin resonance spectroscopic studies of Cu-NaY Zeolites, J. Catal. 94, 370-375 (1985).
101. Boujday S., Wünsch F., Portes P., Bocquet J.-F., and Christophe C.-J., Photocatalytic and electronic properties of TiO2 powders elaborated by sol—gel route and supercritical dryings, Solar Energy Materials and Solar Cell, 83(4), 421-433 (2004).
102. Chusuei C. C., Brookshier M. A., and Goodman D. W., Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size, Langmuir, 15(8), 2806-2808 (1999).
103. Bioschoff B. L. and Anderson M. A., peptization process in the sol-gel preparation of porous anatase (TiO2), Chem. Mater., 7(10), 1772-1778 (1995).
104. 梁乃允,〝納米二氧化鈦透明結晶膜之製作及光催化應用〞,國立中央大學化學工程研究所碩士論文,88年6月。105. 洪伯瑜、邱振銘、曾崇明和蘇昌瑾,〝溶膠凝膠法製備二氧化鈦與其催化性質的分析〞,化學,61(3),445-454 (2003)。
106. 陳弘穎,〝控制氣氛下退火對銅基材上氮化鈦鍍膜微結構之影響〞,國立中興大學材料工程研究所碩士論文,87年6月。107. Gao X., and Wachs I. E, Titania—silica as catalysts: molecular structural characteristics and physico-chemical properties, Catal. Today, 51(2), 233-254 (1999).
108. Feng L., Liu Y., and Hu J., Molecularly imprinted TiO2 thin film by liquid phase deposition for the determination of L-Glutamic Acid, Langmuir, 20(5), 1786-1790 (2004).
109. Yuan Z.-h., Jia J.-h., and Zhang L.-d., Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation., Mater. Chem. and Phys., 73(2-3), 323-326 (2002).
110. Larsson P.-O., Andersson A., and Wallenberg L. R., Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide, J. Catal., 163(2), 279-293 (1996).
111. Sato S., Ueda K., Kawasaki Y., and Nakamura R., In Situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO2 films, J. Phys. Chem. B., 106(35), 9054-9058 (2002).
112. Jin S. and Shiraishi F., Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide, Chem. Eng. J., 97(2-3), 203-211 (2004).