1.Chien Y. C. and Wang H. P., “Liquefaction of Printed Circuit Board Wastes with Product Oil Recycling”. J. Environ. Sci. Heal., A35(4), 635-644 (2000).
2.黃素琴,”塑膠廢棄物資源化之研究”,中華民國環境工程學會第九屆廢棄物處理技術研討會,451-464 (1994)。
3.蘇宗燦,”國內推動廢塑膠資源化的現況”,工業污染防治,第59期,111-124 (1996)。
4.王鴻博,”廢棄物資源化處理技術評估”,工研院委託計畫報告(1993)。
5.DOS/MOEA (Department of Statistics, Ministry of Economic Affairs, R.O.C. on Taiwan), Industrial Production Statistics Monthly Taiwan Area, The Republic of China on Taiwan. No. 302, pp. 127-159 (1994).
6.Zhibo Z., Nishio S., Morioka Y., Ueno A., Ohkita H., Tochihara Y., Mizushima T., and Kakuta N., “Thermal and Chemical Recycle of Waste Polymers”. Catal. Today, 29, 303-308 (1996).
7.Poller R. C., “Reclamation of Waste Plastics and Rubber: Recovery of Materials and Energy”. J. Chem. Tech. Biotechnol., 30, 152-160 (1980).
8.Kastner H. and Kaminsky W., “Recycling Plastics into Feedstocks”. Hydrocarbon Process, May, 109-113 (1995).
9.Molgaard C., “Environmental Impacts by Disposal of Plastic from Municipal Solid Wastes”. Resource. Conserve. Recycl., 15, 51-60 (1995).
10.DeVries J., “The Impact of Plastics on the Environment”. Reference Search Review, Fall, 79-96 (1991).
11.Heberg B. A., Hallenbeck W. H., and Brenniman G. R., “Plastic Recycling Rates”. Resource. Conserve. Recycl., 9, 89-107 (1993).
12.Kirkman A. and Kline C., “Recycling Plastics Today”. CHEMTECH, Oct., 606-614 (1991).
13.Reisch M. S., “Plastics”. Chemical Engineering News, May 22, 30-42 (1995).
14.Rowatt R. J., “The Plastics Waste Problem”. CHEMTECH, Jan., 56-60 (1993).
15.Thayer A. M., “Solid Waste Concerns Spur Plastic Recycling Efforts”. Chem. Eng. News, Jan. 30, 7-15 (1989).
16.吳照雄、鄭建民,”廢PU泡棉再利用研究”,大葉大學環境工程研究所碩士論文 (2001)。17.Chang C. Y., Wu C.H, and Hor J. L., “Pyrolysis Kinetics of Polystyene”. J. Chin. Inst. Environ. Eng., 2(2), 125-133 (1992).
18.Tsuchya Y. and Sumi K., “Thermal Decomposition Products of Polyethylene”. Polymer Sci., 6(A-1), 415-424 (1968).
19.Bhardwaj I. S., Kumar V., and Palanivelu K., “Thermal Characterisation of LDPE and LLDPE Blends”. Thermochimica. Acta, Vol. 131, 241-246 (1988).
20.李玫、陳康興,”高密度聚乙烯(HDPE)及聚丙烯(PP)之熱解氧化研究”,中華民國境工程學會第九屆廢棄物處理技術研討會,147-160 (1994)。
21.Camino G., Costa L., and Trossarelli L., “Thermal Degradation of Polymer-Fire Retardant Mixtures: Pant III-Degradation Products of Polypropylene—Chlorinated Paraffin Mixtures”. Polymer Degrad. Stab, l4, 133-144 (1982).
22.吳照雄、張慶源、梁祐,”氯化氫對聚乙烯熱裂解的影響”,第十一屆廢棄物處理技術研討會論文集,354-359 (1996)。
23.Wu C. H., Chang C. Y., Hor J. L., Shih S. M., Chen L. W. and Chang F. W., “On the Thermal Treatment of Plastic Mixture of MSW: Pyrolysis Kinetics”. Waste Manage, 13, 221-235 (1995).
24.何卓倫,”廢塑膠熱裂解之動力學研究”,台灣大學環工所碩士論文 (1992)。25.Buekens A. G. and Schoeters J. G., “European Experience in the Pyrolysis and Gasification of Solid Wastes”. Conserv. Recycl., 9, 253-269 (1986).
26.White D., “Gasification for the Future”. Chem. Eng., pp. 17-18 (2000).
27.Chen K. S., Yeh R. Z. and Chang Y. R.,”Kinetics of Thermal Decomposition of Styrene-Butadiene Rubber at Low Heating Rates in Nitrogen and Oxygen”. Combust. & Flame, 108, 408-418 (1997).
28.Rothenberger K. S. and Cugini A. V., “Investigation of First-Stage Liquefaction of Coal with Model Plastic Waste Mixtures”. Energy & Fuels, 11(4), 849-855 (1997).
29.Gimouhopoulos K., Doulia D., Vlyssides A., and Georgiou D., “Organic Solvent Effects on Waste Plastics-Lignite Coliquefaction”. Resource Conserv. Recycl., 23, 47-56 (1998).
30.Murty M. V. S., Rangarajan P., Grulke E. A. and Bhattacharyya D., “Thermal Degradation/ Hydrogenation of Commodity Plastics and Characterization of Their Liquefaction Products”. Fuel Processing Technol., 49, 75-90 (1996).
31.Zmierczak W., Xiao X., and Shabtai J., “Depolymerization-Liquefaction of Plastics and Rubber. 2. Polystyrenes, and Styrene-Butadiene Copolymers”. Fuel Process. Technol., 49, 31-48 (1996).
32.Shabtai J., Xiao X., and Zmierczak W., “Depolymerization-Liquefaction of Plastics and Rubber. 1. Polyethylene, Polypropylene, and Polybutadiene”. Energy & Fuels, 11, 76-87 (1997).
33.Kamiya T., “Japan Moves on Plastics Waste, through Liquefaction”. Chemical Engineering, 104, 42 (1997).
34.Kanno T., Kimura M., and Ikenaga N., “Coliquefaction of Coal with Polyethylene Using Fe(CO)5S as Catalyst”. Energy & Fuels, 14(3), 612-617 (2000).
35.Wang H. Paul, Lin Kuen-Song, Kuo C. W., and Hsieh K. A., “Liquefaction of Autofluffs with Product Oils Recycling”. J. Environment Science Health, Part A- Environment Science Engineering, A32(6), 1655-1663 (1997).
36.Castagnoli C. J., Cha S. B., and Wang H. Paul, EU Patent 0574 171 A1 (1993); US Patent 5,364,996 (1994).
37.Wang H. Paul, ROC Patent 84 104 007 (1996); UK Patent GB 230112A (1997); Deutsches Patentment 295 21 196.2 (1997); Australia Patent 689401 (1998).
38.Hopper, G. F., Parrinello G., Parfondry A. and Kroesen D. I. K. W., “Recent Developmentsin the Chemical Recycling of Flexible Polyurethanes”. Cell. Polymer, 11(5), 388-396 (1992).
39.Kinoshita, O., “Process for Decomposition of a Polyurethane Resin”. U. S. Patent Number 3, 632, 530 (1972).
40.綠電再生股份有限公司,”廢聚氨酯(PUR)發泡塑料活化再生技術”,90年度經濟部科技研究發展專案計畫 (2001)。
41.Troev K., Atanasov VI., Tsevi R., Grancharov G. and Tsekova A., “Chemical degradation of polyurethanes. Degradation of microporous polyurethane elastomer by dimethyl phosphonate”. Polymer Degradation and Stability, 67, 159-165 (2000).
42.Troev K., Tsekova A. and Tsevi R., “Chemical degradation of polyurethanes 2. Degradation of flexible polyether foam by dimethyl phosphonate”. Polymer Degradation and Stability, 67, 397-405 (2000).
43.Troev K., Grancharov G. and Tsevi R., “Chemical degradation of polyurethanes 3. Degradation of microporous polyurethane elastomer by diethyl phosphonate and tris(1-methyl-2-chloroethyl) phosphate”. Polymer Degradation and Stability, 70, 43-48 (2000).
44.Troev K., Grancharov G., Tsevi R., and Tsekova A., “A novel approach to recycling of polyurethanes: chemical degradation of flexible polyurethane foams by triethyl phosphate”. Polymer, 41, 7017-7022 (2000).
45.Simioni F. and Bisello S., “Polyol Recovery from Rigid PU Waste”. Cell. Polymer, 2, 281-293 (1983).
46.李俊坤,”聚氨基甲酸乙酯泡棉化學裂解技術基礎研究”,台灣大學環境工程研究所碩士論文 (1997)。47.Bell A. T. and Pines A., “NMR Techniques in Catalysis”. 1st Ed., Marcel Dekker Inc., New York (1994).
48.Lambert J. B. and Mazzola E. P., “Nuclear Magnetic Resonance Spectroscopy”. 1st Ed., Pearson Education Inc., New Jersey (2004).
49.Weil J. A., Bolton J. R., and Wertz J. E., “Electron Paramagnetic Resonance”. 1st Ed., John Wiley & Sons Inc., New York (1994).
50.Nanny M. A., Minear R. A., and Leenheer J. A., “Nuclear Magnetic Resonance Spectroscopy in Environmental Chemistry”. Oxford Unversity (1997).
51.Brandon D. and Kaplan W. D., “Microstructural Characterization of Materials”. 1st Ed., John Wiley & Sons Inc., New York (1999).
52.Levitt M. H., “Spin Dynamics”. 1st Ed., John Wiley & Sons Inc., New York (2001).
53.Charsley E. L. and Warrington S. B., “Thermal Analysis-Techniques and Applications”. 1st Ed., The Royal Society of Chemistry (2002).
54.Vickerman J. C., “Surface Analysis”. 1st Ed., John Wiley & Sons Inc., New York (1997).
55.Briggs D. and Seah M. P., “Practical Surface Analysis”. 2nd Ed., John Wiley & Sons Inc., New York (1990).
56.李志甫,”X-射線法”,第一版,高立圖書有限公司,台灣台北 (1990)。
57.Liebhafsky H. A., “X-rays, Electrons, and Analytical Chemistry”. 1st Ed., John Wiley & Sons Inc., New York (1972).
58.寧永成,”有機化合物結構鑑定與有機波譜學”,第一版,狀元出版社,台灣台北 (1992)。
59.翁瑞裕,”紅外線光譜分析法”,第一版,高立圖書有限公司,台灣台北 (1990)。
60.Smith B. C., “Fourier Transform Infrared Spectroscopy”. 1st Ed., CRC Press Inc., New York (1996).
61.Kucherov, A.V.; Slinkin, A.A. EPR Study of the Distribution of Gd3+ and Cu2+ Ions in HZSM-5 Zeolite. Kinetics & Catalysis 1997, 38(1), 1-7.
62.Slinkin, A.A.; Kucherov, A.V.; Chuvylkin, N.D.; Korsunov, V.A.; Kliachko, A.L.; Nikishenko, S.B. Interaction of Different Molecules with Cu2+ Cations in CuH-ZSM-5. J. Chem. Soc. Faraday Trans. I. 1989, 85(10), 3233-3243.
63.Anderson, M.W.; Kevan, L. Study of Cu2+-Doped Zeolite NaH-ZSM-5 by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies. J. Phys. Chem. 1987, 91(15), 4174-4179.
64.Kucherov, A.V.; Hubbard, C.P.; Shelef, M. Rearrangement of Cations Sites in CuH-ZSM-5 and Reactivity loss upon High-Temperature Calcination and Steam Aging. J. Catal. 1995, 157, 603-610.
65.Kucherov, A.V.; gerlock, G.L.; Jen, H.W.; Shelef, M. State of Copper in a Working, Low-Concentration CuH-ZSM-5 Catalyst for Exhaust Gas Purification: In-Situ ESR Monitoring. Catal. Today 1996, 27, 79-84.
66.Kucherov, A.V.; Hubbard, C.P.; Kucherova, T.N.; Shelef, M. Stabilization of the Ethane Oxidation Catalytic Acitivity of Cu-ZSM-5. Appl. Catal. B:Environ. 1996, 7, 285-298.
67.Larsen, S.C.; Aylor, A.; Bell, A.T.; Reimer, J.A. Electron Paramagnetic Resonance Studies of Copper Ion-Exchanged ZSM-5. J. Phys. Chem. 1994, 98(44), 11533-11540.
68.Kucherov, A.V.; gerlock, J.L.; Jen, H.W.; Shelef, M. In-Situ Determination by ESR of the Oxidation State of Copper in Cu-ZSM-5 in Flowing He and O2 up to 773 K. J. Phys. Chem. 1994, 98(18), 4892-4898.
69.Tanabe, T.; Iijima, T.; Koiwai, A.; Mizuno, K.J.; Yokota, K.; Isogai, A. ESR Study of the Deactivation of Cu-ZSM-5 in a Net Oxidizing Atmosphere. Appl. Catal. B:Environ. 1995, 7, 145-153.
70.Kucherov, A.V.; Slinkin, A.A.; Kondrat’ev, D.A.; Bondarenko, T.N.; Rubinstein, A.M.; Minachev, K.M. Cu2+-Cation Location and Reactivity in Mordenite and ZSM-5: ESR Study. Zeolites 1985, 5, 320-324.
71.Rehr, J.J.; Stern, E.A. Multiple-Scattering Corrections to the Extended X-ray Absorption Fine Structure, Phys. Rev. B 1976, 14, 4413-4417.
72.Sankar, G.; Thomas, J.M.; Waller, D.; Couves, J.W.; Catlow, C.R.A.; Greaves, G.N. Time-Resolved Energy-Dispersive and Conventional EXAFS Studies of the Interactions of Nitrous Oxide with Supported Copper Catalyst, J. Phys. Chem. 1992, 96, 7485-7489.
73.Teraishi, K.; Ishida, M.; Irisawa, J.; Kume, M.; Takahashi, Y.; Nakano, T.; Nakamura, H.; Miyamoto, A. Active Site Structure of Cu/ZSM-5: Computational Study, J. Phys. Chem. B 1997, 101, 8079-8085.
74.Schaich, W.L. Theory of Extended X-ray Absorption Fine Structure: One-Dimensional Model Calculations. Phys. Rev. B 1976, 14, 4420-4425.
75.Narayana, M.; Contarini, S.; Kevan, L. X-Ray Photoelectron and Electron Spin Resonance Spectroscopic Studies of Cu-NaY Zeolites. J. Catal. 1985, 94, 370-375.
76.Contarini, S.; Kevan, L. X-Ray Photoelectron Spectroscopic Studies of Copper-Exchanged X- and Y-Type Sodium Zeolites: Resolution of Two Cupric Ion Components and Dependence on Dehydration and X-Irradition. J. Phys. Chem. 1986, 90(8), 1630-1632.
77.Barr, T.L.; Lishka, M.A. ESCA Studies of the Surface Chemistry of Zeolites. J. Phys. Chem. 1986, 108(12), 3178-3186.
78.Jirka, I.; Bosácek, V. ESCA Study of Cu2+-Y and Cu2+-ZSM-5. Zeolites 1991, 11(1), 77-80.
79.Turner, N.H. Surface Analysis: X-Ray Photoelectron Spectroscopy and Auger Electron Spectroscopy. Anal. Chem. 1998, 70(12), 229R-250R.
80.Alejandre, A.; Medina, F.; Fortuny, A.; Salagre, P.; J.E. Sueiras, J.E. Characterization of Copper Catalysts and Activity for the Oxidation of Phenol Aqueous Solutions. Appl. Catal. B: Environmental 1998, 16(1), 53-67.
81.蔡凱紋,”Pd/CeO2/Al2O3做為觸媒轉化器中觸媒之研究”,中央大學化學工程研究所碩士論文 (1997)。82.陳弘穎,”控制氣氛下退火對銅基材上氮化鈦鍍模微結構之影響”,中興大學材料工程學研究所碩士論文 (1998)。