(3.232.129.123) 您好!臺灣時間:2021/03/04 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳健龍
研究生(外文):Chien-Lung Chen
論文名稱:利用磷酸三乙酯及氧化金屬觸媒裂解資源化廢冰箱泡棉之研究
論文名稱(外文):Recycling of Polyurethane Foams from Waste Refrigerators by Triethyl Phosphate and Metal Oxide Catalyst
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:198
中文關鍵詞:硬質PU泡棉化學降解廢冰箱氧化金屬觸媒資源回收延伸細微結構X光吸收光譜X光吸收邊緣結構光譜
外文關鍵詞:Rigid PU foamChemical degradationWaste refrigeratorsOxide metal catalystsResource recyclingXPSEXAFSXANES
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣地區目前每年約產生50萬台廢冰箱,相當於產生7,500噸硬質PU泡棉。若能進行回收資源化處理,不但可紓解能源壓力,亦能減輕垃圾焚化爐或掩埋場之負荷及延長使用壽命。因此,本研究主要目的是利用加熱降解方式來資源化處理廢棄冰箱中之硬質PU泡棉,並添加不同比例之化學反應劑及氧化金屬觸媒粉末,在定溫及常壓下進行降解反應。實驗中使用之反應劑為磷酸三乙酯(TEP),添加之氧化金屬分別為CeO2、Fe2O3、NiO、CuO及ZnO五種,反應溫度各為453、463與473 K。由元素分析結果顯示,PU泡棉之主要組成有62 %碳、6.9 %氫、23 %氧以及7.9 %氮,經含水率測試後得含水率約1.2 %。由熱重分析分析結果發現PU泡棉在氮氣下之熱解反應為二階反應,第一階熱解溫度範圍約在450~570 K,反應活化能約26 kcal/mol,反應級數約2.5;第二階段熱解溫度約在560~750 K,活化能約50 kcal/mol,反應級數約2.3。
經由黏度、-NCOO-轉化率(FTIR)及分子量分佈(GPC)之測定結果後發現反應溫度= 473 K,TEP/PU = 2,Cat./PU = 1/5為最佳之反應條件;氧化金屬觸媒NiO對於PU泡棉之催化性降解效率有最好之提升效果(反應時間約3 hr,-NCOO-轉化率約59 %),其次為CeO2、Fe2O3、CuO,ZnO提升效率最低;由13C NMR光譜,發現降解產物在化學位移為11.07、14.92、16.48、62.86、64.23及69.49 ppm處有特徵峰產生,由31P NMR光譜得知,降解產物在化學位移為2.34、3.59、5.09、7.83、9.81、9.66、10.50、10.66、11.01及11.09 ppm有特徵峰產生,由產物之組成結構推測,PU泡棉之降解反應機構應以取代反應為主。XPS分析結果顯示,催化性反應後之氧化金屬觸媒其化合物組成分別為CeO2、Fe2O3、NiO、CuO以及ZnO,仍維持與反應前相同之化合物組成。XRPD圖譜結果與掃描式電子顯微鏡(FE-SEM)分析顯示,反應後之Fe2O3與CuO粉末有聚集現象,且少數CuO會轉變為Cu2O,CeO2、NiO與ZnO仍維持原性質;另外,以延伸細微結構X光吸收光譜(EXAFS)及X光吸收邊緣結構(XANES)光譜參與反應過後之Fe2O3、NiO、CuO及ZnO觸媒之第一層原子為Fe-O、Ni-O、Cu-O、Zn-O之鍵結,鍵長分別為1.98、1.98、1.85及1.94 ± 0.02 Å,配位數分別為4.33、4.02、4.04與3.82,可以推測氧化金屬觸媒之氧化價數及反應活性並無明顯改變。

At present, over 0.5 million tons per year of waste refrigerators or 7.5 thousands of waste rigid polyurethane (PU) forms (WRPFs) are to be disposed in Taiwan. Only landfill of the WRPFs is practiced on a large scale, and its cost is rising rapidly and the acceptance of this method is decreasing. Therefore, the main objectives of the present work were to resource recycle the WRPFs degradation into the raw materials of PU or primary petrochemicals by chemical conversion of triethyl phosphate (TEP) and metal oxides catalysts (CeO2, Fe2O3, NiO, CuO or ZnO) under moderate temperatures of 453, 463 or 473 K and ambient pressure. From the elemental analyses (EA) data, the WRPFs were composed of 62% carbon, 6.9% hydrogen, 23% oxygen, and 7.9 % nitrogen, respectively. Moreover, by using thermal gravimetric analyzer (TGA) techniques, the WRPFs of two-stage pyrolysis had an 1st stage activated energy of 26 kcal/mol with reaction orders of 2.5 in the temperatures of 450-570 K and the 2nd stage activated energy of 50 kcal/mol with reaction orders of 2.3 in the temperatures of 560-750 K, respectively.
By using Fourier transform infrared spectroscopy (FTIR) of -NCOO- conversion and gel-permeation chromatography (GPC) analyses, the optimal experimental conditions of WRPFs degradation were confirmed at 473 K, TEP/PU = 2, and Cat./PU = 1/5. Similarly, the most efficient catalyst was the NiO particles with reaction times of 3 hrs and -NCOO- conversion of 59%. Therefore, the catalytic enhancement of metal oxides were NiO > CeO2 > Fe2O3 > CuO > ZnO in series. By 13C (or 31P) nuclear magnetic resonance (NMR) spectra, the chemical shifts of the products were confirmed at 11.07, 14.92, 16.48, 62.86, 64.23, and 69.49 ppm (or 2.34, 3.59, 5.09, 7.83, 9.81, 9.66, 10.50, 10.66, 11.01, and 11.09 ppm), respectively. Moreover, the replacement reactions were the major reaction mechanisms by the structural data of product residues. The little change of the fresh and used CeO2, Fe2O3, NiO, CuO, and ZnO was also observed by using the X-ray photoelectron spectroscopy (XPS) measurements. Furthermore, field-emission scanning microscopy (FE-SEM) and X-ray powder diffractometer (XRPD) data indicated that the sintering or aggregating of the Fe2O3 and CuO particles was formed. In addition, the transformation of CuO to Cu2O and the catalytic properties of CeO2, NiO or ZnO particles were also observed by XRPD patterns, respectively. The EXAFS and XANES spectra revealed that the fine structures of Fe2O3, NiO, CuO, and ZnO species were Fe-O, Ni-O, Cu-O, and Zn-O of the bond distances primarily were 1.98, 1.98, 1.85, and 1.94 ± 0.02 Å, respectively with the coordination numbers were 4.33, 4.02, 4.04, and 3.82 ± 0.05, respectively. However, these results might offer a further explanation of the chemical structures of CeO2, Fe2O3, NiO, CuO, and ZnO catalysts remained the catalytic activities during the WRPFs degradation by chemical conversion of TEP under moderate temperatures and ambient pressure.

中文摘要 I
ABSTRACT III
誌 謝 V
目錄 VI
圖目錄 XII
表目錄 XVIIIII
第一章 緒論 1
1.1 前言 1
1.2 PU泡棉降解實驗研究內容 3
1.3 PU泡棉降解實驗研究方向 3
第二章 文獻回顧 7
2.1 PU泡棉之組成與製造 7
2.1.1 異氰酸酯 9
2.1.2 多元醇 11
2.1.3 其他添加物 11
2.2 塑膠廢棄物之回收技術 14
2.3 PU泡棉之回收技術 15
2.3.1 PU泡棉之物理回收 15
2.3.2 PU泡棉之化學回收 16
2.4 PU聚合物相關之反應機制 20
第三章 實驗設備與方法 23
3.1 PU泡棉之化學降解實驗 23
3.1.1 PU泡棉之化學降解實驗藥品 23
3.1.2 PU泡棉之化學降解實驗器材 24
3.1.3 PU泡棉化學降解實驗步驟 25
3.2 分析方法與儀器介紹 27
3.2.1 PU泡棉含水量之分析 27
3.2.2 傅立葉轉換紅外線光譜分析及計算PU泡棉降解反應後-NCOO-官能基轉化率 27
3.2.3 核磁共振光譜鑑定PU泡棉降解反應後液態產物之結構組成 30
3.2.4 熱重分析儀測定分析PU泡棉之熱解動力 32
3.2.5 掃描式電子顯微鏡觀察PU泡棉催化性降解實驗後氧化金屬觸媒之表面 35
3.2.6 元素分析儀鑑定PU泡棉內含之元素 37
3.2.7 同步輻射EXAFS與XANES光譜分析鑑定PU泡棉催化性降解實驗後氧化金屬觸媒之氧化價數與精細結構 38
3.2.8 膠體滲透層析儀分析及計算PU泡棉降解反應後液態產物之重量平均分子量與分子量分佈 41
3.2.9 X-ray粉末繞射儀及樣品準備 44
3.2.10 化學分析電子光譜儀 46
第四章 結果與討論 48
4.1 硬質PU泡棉廢棄物之物化性質分析 48
4.1.1 硬質PU泡棉廢棄物之基本性質 48
4.1.2 熱重分析儀分析計算PU泡棉之熱解動力參數 51
4.1.3 PU泡棉熱解之反應動力 54
4.2 PU泡棉未添加氧化金屬觸媒之降解實驗研究 56
4.2.1 PU泡棉未添加氧化金屬觸媒之降解實驗中TEP添加量與反應溫度對反應時間之影響 56
4.2.2 PU泡棉未添加氧化金屬觸媒之降解實驗中產物黏度之分析 60
4.2.3 FTIR分析及計算PU泡棉未添加氧化金屬觸媒之降解實驗中PU泡棉之-NCOO-官能基轉化率 63
4.2.4 GPC分析及計算PU泡棉未添加氧化金屬觸媒之降解實驗中降解產物之重量平均分子量與分子量分佈 69
4.2.5 NMR分析鑑定PU泡棉未添加氧化金屬觸媒之降解實驗中液態產物之結構組成 74
4.3 PU泡棉添加氧化金屬觸媒之降解實驗研究 77
4.3.1 PU泡棉之催化性反應中氧化金屬觸媒之種類與添加量對反應時間與產物回收率之影響 78
4.3.2 PU泡棉催化性降解實驗產物之黏度分析 104
4.3.3 FTIR分析及計算PU泡棉催化性降解實驗中PU泡棉之-NCOO-轉化率 111
4.3.4 GPC分析及計算PU泡棉催化性降解實驗中產物之重量平均分子量與分子量分佈 123
4.3.5 NMR分析鑑定PU泡棉催化性降解實驗中液態產物之結構 130
4.3.6 PU泡棉催化性降解實驗中反應後之氧化金屬觸媒表面結構(以FESEM分析) 136
4.3.7 X光吸收近邊緣結構-XANES分析鑑定PU泡棉催化性降解實驗中反應後之氧化金屬觸媒結構與價數 142
4.3.8 延伸細微結構X光吸收光譜-EXAFS分析鍵定PU泡棉催化性降解實驗中反應後之氧化金屬觸媒結構與價數 147
4.3.9 X光粉末繞射儀分析鑑定PU泡棉催化性降解實驗後氧化金屬觸媒之晶型結構 153
4.3.10 X光光電子能譜儀分析鑑定PU泡棉催化性降解實驗後氧化金屬觸媒之表面化學結構 158
第五章 結論與未來研究方向 166
5.1 結論 166
5.2 未來研究方向 168
參考文獻 169

1.Chien Y. C. and Wang H. P., “Liquefaction of Printed Circuit Board Wastes with Product Oil Recycling”. J. Environ. Sci. Heal., A35(4), 635-644 (2000).
2.黃素琴,”塑膠廢棄物資源化之研究”,中華民國環境工程學會第九屆廢棄物處理技術研討會,451-464 (1994)。
3.蘇宗燦,”國內推動廢塑膠資源化的現況”,工業污染防治,第59期,111-124 (1996)。
4.王鴻博,”廢棄物資源化處理技術評估”,工研院委託計畫報告(1993)。
5.DOS/MOEA (Department of Statistics, Ministry of Economic Affairs, R.O.C. on Taiwan), Industrial Production Statistics Monthly Taiwan Area, The Republic of China on Taiwan. No. 302, pp. 127-159 (1994).
6.Zhibo Z., Nishio S., Morioka Y., Ueno A., Ohkita H., Tochihara Y., Mizushima T., and Kakuta N., “Thermal and Chemical Recycle of Waste Polymers”. Catal. Today, 29, 303-308 (1996).
7.Poller R. C., “Reclamation of Waste Plastics and Rubber: Recovery of Materials and Energy”. J. Chem. Tech. Biotechnol., 30, 152-160 (1980).
8.Kastner H. and Kaminsky W., “Recycling Plastics into Feedstocks”. Hydrocarbon Process, May, 109-113 (1995).
9.Molgaard C., “Environmental Impacts by Disposal of Plastic from Municipal Solid Wastes”. Resource. Conserve. Recycl., 15, 51-60 (1995).
10.DeVries J., “The Impact of Plastics on the Environment”. Reference Search Review, Fall, 79-96 (1991).
11.Heberg B. A., Hallenbeck W. H., and Brenniman G. R., “Plastic Recycling Rates”. Resource. Conserve. Recycl., 9, 89-107 (1993).
12.Kirkman A. and Kline C., “Recycling Plastics Today”. CHEMTECH, Oct., 606-614 (1991).
13.Reisch M. S., “Plastics”. Chemical Engineering News, May 22, 30-42 (1995).
14.Rowatt R. J., “The Plastics Waste Problem”. CHEMTECH, Jan., 56-60 (1993).
15.Thayer A. M., “Solid Waste Concerns Spur Plastic Recycling Efforts”. Chem. Eng. News, Jan. 30, 7-15 (1989).
16.吳照雄、鄭建民,”廢PU泡棉再利用研究”,大葉大學環境工程研究所碩士論文 (2001)。
17.Chang C. Y., Wu C.H, and Hor J. L., “Pyrolysis Kinetics of Polystyene”. J. Chin. Inst. Environ. Eng., 2(2), 125-133 (1992).
18.Tsuchya Y. and Sumi K., “Thermal Decomposition Products of Polyethylene”. Polymer Sci., 6(A-1), 415-424 (1968).
19.Bhardwaj I. S., Kumar V., and Palanivelu K., “Thermal Characterisation of LDPE and LLDPE Blends”. Thermochimica. Acta, Vol. 131, 241-246 (1988).
20.李玫、陳康興,”高密度聚乙烯(HDPE)及聚丙烯(PP)之熱解氧化研究”,中華民國境工程學會第九屆廢棄物處理技術研討會,147-160 (1994)。
21.Camino G., Costa L., and Trossarelli L., “Thermal Degradation of Polymer-Fire Retardant Mixtures: Pant III-Degradation Products of Polypropylene—Chlorinated Paraffin Mixtures”. Polymer Degrad. Stab, l4, 133-144 (1982).
22.吳照雄、張慶源、梁祐,”氯化氫對聚乙烯熱裂解的影響”,第十一屆廢棄物處理技術研討會論文集,354-359 (1996)。
23.Wu C. H., Chang C. Y., Hor J. L., Shih S. M., Chen L. W. and Chang F. W., “On the Thermal Treatment of Plastic Mixture of MSW: Pyrolysis Kinetics”. Waste Manage, 13, 221-235 (1995).
24.何卓倫,”廢塑膠熱裂解之動力學研究”,台灣大學環工所碩士論文 (1992)。
25.Buekens A. G. and Schoeters J. G., “European Experience in the Pyrolysis and Gasification of Solid Wastes”. Conserv. Recycl., 9, 253-269 (1986).
26.White D., “Gasification for the Future”. Chem. Eng., pp. 17-18 (2000).
27.Chen K. S., Yeh R. Z. and Chang Y. R.,”Kinetics of Thermal Decomposition of Styrene-Butadiene Rubber at Low Heating Rates in Nitrogen and Oxygen”. Combust. & Flame, 108, 408-418 (1997).
28.Rothenberger K. S. and Cugini A. V., “Investigation of First-Stage Liquefaction of Coal with Model Plastic Waste Mixtures”. Energy & Fuels, 11(4), 849-855 (1997).
29.Gimouhopoulos K., Doulia D., Vlyssides A., and Georgiou D., “Organic Solvent Effects on Waste Plastics-Lignite Coliquefaction”. Resource Conserv. Recycl., 23, 47-56 (1998).
30.Murty M. V. S., Rangarajan P., Grulke E. A. and Bhattacharyya D., “Thermal Degradation/ Hydrogenation of Commodity Plastics and Characterization of Their Liquefaction Products”. Fuel Processing Technol., 49, 75-90 (1996).
31.Zmierczak W., Xiao X., and Shabtai J., “Depolymerization-Liquefaction of Plastics and Rubber. 2. Polystyrenes, and Styrene-Butadiene Copolymers”. Fuel Process. Technol., 49, 31-48 (1996).
32.Shabtai J., Xiao X., and Zmierczak W., “Depolymerization-Liquefaction of Plastics and Rubber. 1. Polyethylene, Polypropylene, and Polybutadiene”. Energy & Fuels, 11, 76-87 (1997).
33.Kamiya T., “Japan Moves on Plastics Waste, through Liquefaction”. Chemical Engineering, 104, 42 (1997).
34.Kanno T., Kimura M., and Ikenaga N., “Coliquefaction of Coal with Polyethylene Using Fe(CO)5S as Catalyst”. Energy & Fuels, 14(3), 612-617 (2000).
35.Wang H. Paul, Lin Kuen-Song, Kuo C. W., and Hsieh K. A., “Liquefaction of Autofluffs with Product Oils Recycling”. J. Environment Science Health, Part A- Environment Science Engineering, A32(6), 1655-1663 (1997).
36.Castagnoli C. J., Cha S. B., and Wang H. Paul, EU Patent 0574 171 A1 (1993); US Patent 5,364,996 (1994).
37.Wang H. Paul, ROC Patent 84 104 007 (1996); UK Patent GB 230112A (1997); Deutsches Patentment 295 21 196.2 (1997); Australia Patent 689401 (1998).
38.Hopper, G. F., Parrinello G., Parfondry A. and Kroesen D. I. K. W., “Recent Developmentsin the Chemical Recycling of Flexible Polyurethanes”. Cell. Polymer, 11(5), 388-396 (1992).
39.Kinoshita, O., “Process for Decomposition of a Polyurethane Resin”. U. S. Patent Number 3, 632, 530 (1972).
40.綠電再生股份有限公司,”廢聚氨酯(PUR)發泡塑料活化再生技術”,90年度經濟部科技研究發展專案計畫 (2001)。
41.Troev K., Atanasov VI., Tsevi R., Grancharov G. and Tsekova A., “Chemical degradation of polyurethanes. Degradation of microporous polyurethane elastomer by dimethyl phosphonate”. Polymer Degradation and Stability, 67, 159-165 (2000).
42.Troev K., Tsekova A. and Tsevi R., “Chemical degradation of polyurethanes 2. Degradation of flexible polyether foam by dimethyl phosphonate”. Polymer Degradation and Stability, 67, 397-405 (2000).
43.Troev K., Grancharov G. and Tsevi R., “Chemical degradation of polyurethanes 3. Degradation of microporous polyurethane elastomer by diethyl phosphonate and tris(1-methyl-2-chloroethyl) phosphate”. Polymer Degradation and Stability, 70, 43-48 (2000).
44.Troev K., Grancharov G., Tsevi R., and Tsekova A., “A novel approach to recycling of polyurethanes: chemical degradation of flexible polyurethane foams by triethyl phosphate”. Polymer, 41, 7017-7022 (2000).
45.Simioni F. and Bisello S., “Polyol Recovery from Rigid PU Waste”. Cell. Polymer, 2, 281-293 (1983).
46.李俊坤,”聚氨基甲酸乙酯泡棉化學裂解技術基礎研究”,台灣大學環境工程研究所碩士論文 (1997)。
47.Bell A. T. and Pines A., “NMR Techniques in Catalysis”. 1st Ed., Marcel Dekker Inc., New York (1994).
48.Lambert J. B. and Mazzola E. P., “Nuclear Magnetic Resonance Spectroscopy”. 1st Ed., Pearson Education Inc., New Jersey (2004).
49.Weil J. A., Bolton J. R., and Wertz J. E., “Electron Paramagnetic Resonance”. 1st Ed., John Wiley & Sons Inc., New York (1994).
50.Nanny M. A., Minear R. A., and Leenheer J. A., “Nuclear Magnetic Resonance Spectroscopy in Environmental Chemistry”. Oxford Unversity (1997).
51.Brandon D. and Kaplan W. D., “Microstructural Characterization of Materials”. 1st Ed., John Wiley & Sons Inc., New York (1999).
52.Levitt M. H., “Spin Dynamics”. 1st Ed., John Wiley & Sons Inc., New York (2001).
53.Charsley E. L. and Warrington S. B., “Thermal Analysis-Techniques and Applications”. 1st Ed., The Royal Society of Chemistry (2002).
54.Vickerman J. C., “Surface Analysis”. 1st Ed., John Wiley & Sons Inc., New York (1997).
55.Briggs D. and Seah M. P., “Practical Surface Analysis”. 2nd Ed., John Wiley & Sons Inc., New York (1990).
56.李志甫,”X-射線法”,第一版,高立圖書有限公司,台灣台北 (1990)。
57.Liebhafsky H. A., “X-rays, Electrons, and Analytical Chemistry”. 1st Ed., John Wiley & Sons Inc., New York (1972).
58.寧永成,”有機化合物結構鑑定與有機波譜學”,第一版,狀元出版社,台灣台北 (1992)。
59.翁瑞裕,”紅外線光譜分析法”,第一版,高立圖書有限公司,台灣台北 (1990)。
60.Smith B. C., “Fourier Transform Infrared Spectroscopy”. 1st Ed., CRC Press Inc., New York (1996).
61.Kucherov, A.V.; Slinkin, A.A. EPR Study of the Distribution of Gd3+ and Cu2+ Ions in HZSM-5 Zeolite. Kinetics & Catalysis 1997, 38(1), 1-7.
62.Slinkin, A.A.; Kucherov, A.V.; Chuvylkin, N.D.; Korsunov, V.A.; Kliachko, A.L.; Nikishenko, S.B. Interaction of Different Molecules with Cu2+ Cations in CuH-ZSM-5. J. Chem. Soc. Faraday Trans. I. 1989, 85(10), 3233-3243.
63.Anderson, M.W.; Kevan, L. Study of Cu2+-Doped Zeolite NaH-ZSM-5 by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies. J. Phys. Chem. 1987, 91(15), 4174-4179.
64.Kucherov, A.V.; Hubbard, C.P.; Shelef, M. Rearrangement of Cations Sites in CuH-ZSM-5 and Reactivity loss upon High-Temperature Calcination and Steam Aging. J. Catal. 1995, 157, 603-610.
65.Kucherov, A.V.; gerlock, G.L.; Jen, H.W.; Shelef, M. State of Copper in a Working, Low-Concentration CuH-ZSM-5 Catalyst for Exhaust Gas Purification: In-Situ ESR Monitoring. Catal. Today 1996, 27, 79-84.
66.Kucherov, A.V.; Hubbard, C.P.; Kucherova, T.N.; Shelef, M. Stabilization of the Ethane Oxidation Catalytic Acitivity of Cu-ZSM-5. Appl. Catal. B:Environ. 1996, 7, 285-298.
67.Larsen, S.C.; Aylor, A.; Bell, A.T.; Reimer, J.A. Electron Paramagnetic Resonance Studies of Copper Ion-Exchanged ZSM-5. J. Phys. Chem. 1994, 98(44), 11533-11540.
68.Kucherov, A.V.; gerlock, J.L.; Jen, H.W.; Shelef, M. In-Situ Determination by ESR of the Oxidation State of Copper in Cu-ZSM-5 in Flowing He and O2 up to 773 K. J. Phys. Chem. 1994, 98(18), 4892-4898.
69.Tanabe, T.; Iijima, T.; Koiwai, A.; Mizuno, K.J.; Yokota, K.; Isogai, A. ESR Study of the Deactivation of Cu-ZSM-5 in a Net Oxidizing Atmosphere. Appl. Catal. B:Environ. 1995, 7, 145-153.
70.Kucherov, A.V.; Slinkin, A.A.; Kondrat’ev, D.A.; Bondarenko, T.N.; Rubinstein, A.M.; Minachev, K.M. Cu2+-Cation Location and Reactivity in Mordenite and ZSM-5: ESR Study. Zeolites 1985, 5, 320-324.
71.Rehr, J.J.; Stern, E.A. Multiple-Scattering Corrections to the Extended X-ray Absorption Fine Structure, Phys. Rev. B 1976, 14, 4413-4417.
72.Sankar, G.; Thomas, J.M.; Waller, D.; Couves, J.W.; Catlow, C.R.A.; Greaves, G.N. Time-Resolved Energy-Dispersive and Conventional EXAFS Studies of the Interactions of Nitrous Oxide with Supported Copper Catalyst, J. Phys. Chem. 1992, 96, 7485-7489.
73.Teraishi, K.; Ishida, M.; Irisawa, J.; Kume, M.; Takahashi, Y.; Nakano, T.; Nakamura, H.; Miyamoto, A. Active Site Structure of Cu/ZSM-5: Computational Study, J. Phys. Chem. B 1997, 101, 8079-8085.
74.Schaich, W.L. Theory of Extended X-ray Absorption Fine Structure: One-Dimensional Model Calculations. Phys. Rev. B 1976, 14, 4420-4425.
75.Narayana, M.; Contarini, S.; Kevan, L. X-Ray Photoelectron and Electron Spin Resonance Spectroscopic Studies of Cu-NaY Zeolites. J. Catal. 1985, 94, 370-375.
76.Contarini, S.; Kevan, L. X-Ray Photoelectron Spectroscopic Studies of Copper-Exchanged X- and Y-Type Sodium Zeolites: Resolution of Two Cupric Ion Components and Dependence on Dehydration and X-Irradition. J. Phys. Chem. 1986, 90(8), 1630-1632.
77.Barr, T.L.; Lishka, M.A. ESCA Studies of the Surface Chemistry of Zeolites. J. Phys. Chem. 1986, 108(12), 3178-3186.
78.Jirka, I.; Bosácek, V. ESCA Study of Cu2+-Y and Cu2+-ZSM-5. Zeolites 1991, 11(1), 77-80.
79.Turner, N.H. Surface Analysis: X-Ray Photoelectron Spectroscopy and Auger Electron Spectroscopy. Anal. Chem. 1998, 70(12), 229R-250R.
80.Alejandre, A.; Medina, F.; Fortuny, A.; Salagre, P.; J.E. Sueiras, J.E. Characterization of Copper Catalysts and Activity for the Oxidation of Phenol Aqueous Solutions. Appl. Catal. B: Environmental 1998, 16(1), 53-67.
81.蔡凱紋,”Pd/CeO2/Al2O3做為觸媒轉化器中觸媒之研究”,中央大學化學工程研究所碩士論文 (1997)。
82.陳弘穎,”控制氣氛下退火對銅基材上氮化鈦鍍模微結構之影響”,中興大學材料工程學研究所碩士論文 (1998)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔