(3.231.29.122) 您好!臺灣時間:2021/02/26 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝鴻駿
研究生(外文):Hung-Jing Shie
論文名稱:光纖網狀網路之故障保護品質保證
論文名稱(外文):Guaranteed Quality of Protection (QoP) in WDM Mesh Network
指導教授:黃依賢黃依賢引用關係
指導教授(外文):I-Shyan Hwang
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:19
中文關鍵詞:保護品質網狀拓樸段落保護路徑線段錯誤節點錯誤頻道錯誤
外文關鍵詞:Quality of ProtectionMesh TopologySegment Protection PathLink FailureNode FaultChannel Fault
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一個在WDM網狀網路之故障保護品質保障的機制。根據需求將QoP之機制分為四個等級,而且每個等級都對應到一個合適的回復機制,一旦發生了錯誤,控制系統將啟動對應QoP分級的保護機制,若保護程序失敗時,本篇論文所提出的演算法將執行動態回復機制再一次地回復,因此當錯誤發生時,有兩次的機會可以去重新繞送,而且錯誤回復的機率將增加以滿足使用者的需求。在錯誤回復機制方面,本篇論文提出段落保護的方法,使用分散式的控制。這提出的演算法事先計算段落保護路徑,在錯誤發生後,錯誤的路徑將轉換到保護路徑上繼續傳輸。利用將網狀網路邏輯地轉換到複合環架構,每一個節點將記錄本身的邏輯環,然後比較這邏輯環記錄以產生適當的保護路徑同時分配波長。在錯誤回復程序中,偵測到錯誤的節點將啟動保護機制,選取最近的保護路徑回復,而其他正常的連線將不會被影響。由於每個節點只處理自己本身的繞送資訊所以可以加速這錯誤回復的程序。從模擬中得知本篇論文所提出的方法有較佳的效能及較低的中斷機率。

This study proposes a guaranteed quality of protection (QoP) mechanism for Wavelength Division Multiplexing (WDM) mesh networks. Four classes of priority for QoP algorithm are applied according to the request, and each of them is mapping to the adaptively recovery methodology. Once a failure occurs, the control system will start up the protection mechanism in compliance with the QoP class. If the protection procedure failed, the proposed algorithm will then execute the restoration mechanism with next priority of QoP class. Consequently, there are two opportunities to reroute when a failure occurs, and the probability of fault recovery is significantly increased to satisfy the customer’s request in protection. For the fault recovery mechanism, this paper exploits the segment protection method with distributed control. The proposed algorithm pre-calculates the segment protection path, and the working path will be rerouted to the backup path after the fault occurs. By converting the mesh networks into multiple-ring architecture, each node records related logical rings. Then, the proposed algorithm will compare all possible backup routes to obtain the adaptive protection path and assign suitable wavelengths. In the fault recovery procedure, a node detected a fault will start up the protection algorithm and chooses the nearest backup segment path. The other normal links will not be affected; therefore, the scale of the recovery area is limited. Furthermore, a node only deals with its own routing information by employing distributed control, so the fault recovery procedure can be speeded up. Simulation results reveal that the proposed method has great performance and lower blocking probability.

1. Introduction…………………………………………………………1
1.1 Related Studies.………………………………………………… 2
1.2.Motivation……….…………………………………………………3
2. QoP mechanism and segment protection path algorithm…… 4
2.1 Guaranteed QoP (GQoP) mechanism………………………………4
2.2 Parameter Definitions……………………………………………6
2.3 Protection Path Algorithm………………………………………8
3. Fault Recovery………………………………………………………10
3.1 Guaranteed QoP Recovery mechanism……………………………11
3.2 Link Fault……………………………………………………………11
3.3 Node Fault……………………………………………………………12
3.4 Channel Fault………………………………………………………13
4. Simulation Result …………………………………………………13
5. Conclusions and Future Work………………………………………18
References…………………………………………………………………18

[1]C.A. Brackett, “Dense Wavelength Division Networks: Principles and Applications,” IEEE Journal on Selected Areas in Communications, Vol. 8, No. 6, pp. 948-964, Aug 1990.
[2]J.R. Kiniry, “Wavelength Division Multiplexing: Ultra High-Speed Fiber Optics,” IEEE Internet Computing, Vol. 2, No. 2, pp. 13-15, Mar/Apr 1998.
[3]O. Gerstel and G. Sasaki, “Quality of Protection (QoP): a Guantitative Unifying Paradigm to Protection Service Grades,” Optical Network Magazine, Vol. 3, No. 3, pp. 42-51, MAY/JUNE 2002.
[4]J. Wang, L. Sahasrabuddhe, and B. Mukherjee, “Path vs. Subpath vs. Link Restoration for Fault Management in IP-over-WDM Networks: Performance Comparisons using GMPLS Control Signaling,” IEEE Communication Magazine, Vol. 40, pp. 2-9, Nov. 2002.
[5]R. Ramamurthy et al., “Capacity Performance of Dynamic Provisioning in Optical Networks,” Journal of Lightwave Technology, Vol. 19, pp. 40-48, Jan. 2001.
[6]O. Gerstel and R.Ramaswami, “Optical Layer Survivability — An Implementation Perspective,” IEEE Journal on Selected Areas in Communications, Vol. 18, pp. 1885-99, Oct. 2000.
[7]D. Xu, Y. Xiong and C. Qiao, “Novel Algorithms for Shared Segment Protection,” IEEE Journal on Selected Areas in Communications, Vol. 21, No. 8, pp. 1320-1331, Oct. 2003.
[8]C.V Saradhi and C.S.R. Murthy, “Segmented Protection Paths in WDM mesh networks,” Workshop on High Performance Switching and Routing, pp. 311-316, June 24-27, 2003.
[9]R. He, H. Wen, G. Wang and L. Li; “Dynamic Sub-path Protection Algorithm for Multi-Granularity Traffic in WDM mesh networks,” Communication Technology Proceedings, International Conference on ICCT 2003, Vol. 1, pp. 697—701, April 9-11, 2003.
[10]O. Crochat and J.L. Boudec, “Design protection for WDM optical networks,” IEEE Journal on Selected Areas in Communications, Vol. 16, No 7, pp. 1158-1165, Sep. 1998.
[11]Y. Miyao and H. Saito, “Optimal Design and Evaluation of Survivable WDM transport networks,” IEEE Journal on Selected Areas in Communications, Vol. 16, No 7, pp. 1190-1198, Sep. 1998.
[12]P. Gadiraju and H.T. Mouftah, “Channel Protection in WDM mesh networks,” IEEE Workshop on High Performance Switching and Routing, pp. 26-30, 2001.
[13]I-Shyan Hwang, I-Feng Huang, and Chia-Chin Chien, “A Novel Dynamic Fault Restoration Mechanism using Multiple Rings Approach in WDM mesh network,” The 5th Pacific Rim Conference on Lasers and Electro-Optics, Vol. 2, pp. 390-390, Dec. 2003

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔