(3.237.178.91) 您好!臺灣時間:2021/03/07 14:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭姿君
研究生(外文):Tzu-Chun Kuo
論文名稱:平滑輸入滑動模式控制設計
論文名稱(外文):Design of Sliding Mode Control with Smooth Input
指導教授:黃英哲黃英哲引用關係
指導教授(外文):Ying J. Huang
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:英文
論文頁數:84
中文關鍵詞:滑動模式控制模糊控制根軌跡機器手臂水下載具垂直昇降飛機
外文關鍵詞:sliding mode controlfuzzy controlroot locusmanipulatorunderwater vehiclevertical takeoff and landing aircraft
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以設計平滑輸入的滑動模式控制來改善令人詬病切跳的缺點。傳統的滑動模式控制是利用不連續的輸入在指定好的路徑下驅使系統狀態的軌跡由初始值往原點接近。然而,不連續輸入所產生的切跳現象會造成硬體實現上的問題,因此,吾人使用了幾個方法來改善這個切跳現象,包括傳統的邊界層技術、模糊控制,以及連續滑動模式控制。另外,也使用根軌跡的方法來設計滑動函數,其目的是做極點配置以增強系統的性能。藉由電腦模擬,驗證所提出控制的方法可以確保系統在有參數擾動及外來干擾下的穩定性。
In this dissertation, the sliding mode control with smooth control law is developed. Classical sliding mode control uses a discontinuous control action to drive the state from an arbitrary initial state to the origin along a user-specified path and exhibits robustness to parameter uncertainties and external disturbances. However, the chattering due to the discontinuity control law is undesirable in the most applications. Several methods to eliminate the input chattering are proposed which include the traditional boundary layer method, fuzzy logic control, and continuous output-sliding control approach. In addition, using the root locus technique in the design of sliding function makes possible the complete pole assignment and improves the control system performance. Through the computer simulation, it is verified that the proposed methods assure the system performance and the robustness in the presence of parameter uncertainties and external disturbances.
書名頁 i
推薦函 ii
論文口試委員審定書 iii
授權書 iv
中文摘要 vii
英文摘要 viii
誌謝 xi
Contents x
List of Tables xii
List of Figures xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The fundamental of output-sliding control 2
1.3 The fundamental of fuzzy logic control 6
1.4 Dissertation outline 7
Chapter 2 Output-sliding control for nonlinear time-varying systems 10
2.1 Overview 10
2.2 Control methodology 11
2.2.1 Definition of sliding function 11
2.2.2 Determination of the relative degree 12
2.2.3 Formulation of the control law 13
2.2.4 Proof of the sliding condition 15
2.3 Manipulator position control 16
2.4 Summary 21
Chapter 3 Fuzzy output-sliding control via pole assignment 30
3.1 Overview 30
3.2 Control methodology 31
3.2.1 Sliding function definition 31
3.2.2 Control law formulation 32
3.2.3 Fuzzy-logic-based switching 34
3.2.4 Assignment of the closed-loop poles 37
3.2.5 Assignment of the conventional SMC poles 39
3.2.6 Formulation of the controller gain 41
3.3 Numerical results 43
3.3.1 Diving system control 43
3.3.2 Steering system control 46
3.4 Summary 49
Chapter 4 Robust continuous output-sliding control 63
4.1 Overview 63
4.2 Control methodology 63
4.2.1 Definition of sliding function 64
4.2.2 Formulation of the control law 65
4.3 Numerical results 69
4.4 Summary 71
Chapter 5 Conclusions 80
References 82
[1] Itkis, U., Control system of variable structure, John Wiley & Sons, New York, 1976.
[2] Utkin, V. I., Sliding modes in control and optimization, Springer-Verlag, New York, 1992.
[3] Hung, J. Y., Gao, W., and Hung, J. C., “Variable structure control: a survey,” IEEE Trans. Ind. Electron., 40, 1993.
[4] Young, K. D., Utkin, V. I. and Özgüner, Ü., “A control engineer''s guide to sliding mode control,” IEEE Trans. Contr. Syst. Technol., 7, 328-342, 1999.
[5] Xu, J. X., Pan, Y. J, and Lee, T. H., “A VSS identification scheme for time-varying parameters,” Automatica, 39, 727-734, 2003.
[6] Huang, Y. J. and Yeung, K. S., “A robust control scheme against all parameter variations and disturbances,” Int. J. Syst. Sci., 25, 1621-1629, 1994.
[7] Huang, Y. J. and Yeung, K. S., “Output-sliding control design of multivariable systems,” Int. J. Syst. Sci., 25, 1373-1389, 1994.
[8] Huang, Y. J. and Way, H. K., “Output-sliding control for a class of nonlinear systems,” ISA Trans., 40, 123-131, 2001.
[9] Huang, Y. J. and Kuo, T. C., “Robust control for nonlinear time-varying systems with application to a robotic manipulator,” Int. J. Syst. Sci., 33, 831-837, 2002.
[10] Zadeh, L. A., “The concept of a linguistic variable and its application to approximate reasoning,” Infor. Sci., 18, 199-249, 1975.
[11] Mamdani, E. H., “Application of fuzzy logic to approximate reasoning using linguistic synthesis,” IEEE Trans. Comput., 26, 1182-1191, 1977.
[12] Lee, C.C., “Fuzzy logic in control systems: fuzzy logic controller-part I/II,” IEEE Trans. Sys. Man Cyber., 20, 404-435, 1990.
[13] Slotine, J. J. and Sastry, S. S., “Tracking control of non-linear system using sliding surfaces with application to robot manipulators” Int. J. Contr., 38, 465-492, 1983.
[14] Guldner, J. and Utkin, V. I., “Sliding mode control for gradient tracking and robot navigation using artificial potential fields,” IEEE Trans. Robotics Automat., 11, 247-254, 1995.
[15] Yu, H. and Lloyd, S., “Variable structure adaptive control of robot manipulators,” IEE Proc., Contr. Theo. Applica., 144, 167-176, 1997.
[16] Ertugul, M., Kaynak, O., and Kerestecioglu, F., “Gain adaptation in sliding mode control of robotic manipulators,” Int. J. Sys. Sci., 31, 1099-1106, 2000.
[17] Isidori, A., Nonlinear control systems: an introduction, Springer-Verlag, New York, 1985.
[18] Poljak, S., “On the gap between the structural controllability of time-varying and time invariant systems,” IEEE Trans. Automat. Contr., 37, 1961-1965, 1992.
[19] Xie, L. and De Souza, C. E., “Robust H∞ control for linear systems with norm-bounded time-varying uncertainty,” IEEE Trans. Automat. Contr., 37, 1188-1191, 1992.
[20] Chio, S. B. and Kim, J. S., “A fuzzy-sliding mode controller for robust tracking of robotic manipulators,” Mechatronics, 7, 199-216, 1997.
[21] Hashimoto, H., Yamamoto, H., Yanagisawa, S., and Harashima, F., “Brushless servo motor control using variable structure approach,” IEEE Trans. Ind. Electron., 24, 160-169, 1988.
[22] Hsia, T. C. S., Lasky, T. A., and Guo, Z., “Robust independent joint controller design for industrial robot manipulators,” IEEE Trans. Ind. Electron., 38, 21-25, 1991.
[23] Choi, Y. K., Lee, M. J., Kim, J. S., and Kay, Y. C., “Design and implementation of an adaptive neural-network compensator for control systems,” IEEE Trans. Ind. Electron., 48, 416-423, 2001.
[24] Kuo, B. C., Automatic control system, Prentice Hall, Englewood Cliffs, New Jersey, 1995.
[25] Nise, N. S., Control systems engineering, John Wiley & Sons, New York, 2000.
[26] Franklin, G. F, Powell, J. D., and Emami-Naeina, A., Feedback control of dynamic systems, Addison-Wesley, New York, 1994.
[27] Wang, H. O., Tanaka, K., and Griffin, M. F., “An approach to fuzzy control of nonlinear systems: stability and design issue,” IEEE Trans. Fuzzy. Syst., 4, 14-23, 1996.
[28] Chang, Y. C., “Robust tracking control for nonlinear MIMO systems via fuzzy approaches,” Automatica, 36, 1535-1545, 2000.
[29] Fossen, T. I., Guidance and control of ocean vehicle, John Wiley & Sons, New York, 1994.
[30] Valavanis, K. P. and Gracanin, D., “Control architectures for autonomous underwater vehicles,” IEEE Contr. Syst. Mag., 17, 48-64, 1997.
[31] Huang, Y. J., “Sliding mode control design for aircraft control systems,” IEEE Regional Conference on Aerospace Control Systems, 309-313, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔