(3.239.33.139) 您好!臺灣時間:2021/03/08 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃仕泓
研究生(外文):Shih-Hung Huang
論文名稱:表面聲波感測元件與多功能實驗平台之設計與開發
論文名稱(外文):Design and Development of Surface Acoustic Wave and Multi-Functional Measurement Device for Chemical Sensor
指導教授:柯正浩
指導教授(外文):Kevin Ko
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:67
中文關鍵詞:表面聲波氣體感測器高分子拓印聚合物傅立葉轉換紅外光譜顯微鏡
外文關鍵詞:Surface Acoustic WavesensorMolecularly Imprinted PolymersFT-IR Microscope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面聲波元件近年來被廣泛的應用在各類無線通訊領域中,例如:視訊、行動通訊、雷達系統等。由於SAW的聲波能量大多集中在近表面處,使得元件的靈敏性高,當晶體受到擾動影響,表面聲波元件會在波傳特性上產生對應的訊號漂移量,可供量測系統精確偵測其細微的變化量。因此SAW無論在化學或生化的感測技術發展上,都具有相當的優勢與潛力。
本論文研究方向,係以整合多樣不同領域之技術,發展一具有更高靈敏與選擇特性的SAW-MIP氣體感測器為最終發展目標,因此論文內容在於設計與製作一適合SAW-MIP氣體感測器使用之SAW感測元件,並透過不同結構的設計,討論各種元件參數對聲波特性的影響,以便能進一步發展具有更好聲波性質的SAW元件。另外,為能詳盡精確驗證SAW-MIP感測元件的偵測性質與極限,本研究突破傳統的量測機制,嘗試結合高頻電路量測技術以及國家同步輻射中心的FT-IR紅外光譜顯微鏡,設計出一套全新的實驗量測平台,藉由此平台之多功特性環境,可同時對感測元件進行電性與光學量測,並定性且定量地對於薄膜上氣體的吸附變化及其附著物的種類、濃度等相關情形進行微量分析。因此藉由元件與量測平台的設計與製作,對於進而發展具有極高感測性質之SAW-MIP氣體感測器,本研究論文的成果,提供了理論及技術整合方面極為適當且重要的開端。

The surface acoustic wave (SAW) devices have been widely used in wireless applications, such as television, mobile communications, and radar systems, etc. SAW device is extremely sensitive to external loading on its delay line area coated with chemically absorbing film, which makes it suitable for high sensitivity chemical and bio sensing (with detection limit down to sub ppm range).
The goal of the research is develop high sensitivity and high selectivity device of SAW-MIP technology for air sensing environment. The work in this thesis focusing on design and fabricate a SAW device which suitable for SAW-MIP sensing device. In order to develop the high quality device, we try to arrange of several different constructions and discuss the sound wave effect by various parameters.
In chemical and bio sensing based on SAW technology, conventional measurements by external RF circuits can not provide chemical information on the absorbed specimen in the chemical thin film. In order to overcome this shortage in the characterization of such a device, we have designed a novel measurement device, which combines the electronic measurement on the resonance frequency shifting and the spectrum measurement in the IR range. The novel design of our measurement platform allows spectro-microscopic and electronic measurements of the SAW sensors under the same chemical environment. The detection limit of the chemical specimen of the FT-IR spectro-microscope is comparable to that of electronic measurement. In this regard, the spectro-microscopic FT-IR technique provides detailed information for the characterization of the electronic signals. The results of thesis provide the important opening for theory and technology of SAW-MIP research.

第1章 緒論 1
1.1 研究背景 1
1.2 研究動機與方向 3
1.3 論文架構 3
第2章 表面聲波元件原理 5
2.1 壓電現象 ( piezoelectric effect ) 5
2.2 壓電方程式 7
2.3 壓電材料 9
2.4 壓電材料參數 10
2.5 表面聲波(SAW)元件技術 12
2.5.1 雷利波 12
2.5.2 工作原理 13
2.5.3 指狀電極 (Interdigital Transducers, IDTs) 14
2.5.4 IDTs之排列方式 16
2.6 SAW感測器元件 17
2.7 SAW感測器機制 19
2.7.1 環境擾動因子 19
2.7.2 波傳特性的變化 20
2.7.3 質量負載效應 21
2.8 薄膜之漂移頻率影響 23
第3章 感測器元件與實驗平台設計 25
3.1 SAW元件設計 25
3.1.1 基本型 27
3.1.2 電極型 27
3.1.3 波導型 28
3.2 元件製作 30
3.3 MIP化學薄膜 33
3.4 量測技術 35
3.5 FT-IR紅外光譜顯微鏡 37
3.6 多功能實驗平台 38
第4章 實驗結果與討論 42
4.1 光罩的製作 42
4.2 元件製程實驗 43
4.2.1 初期元件製作 43
4.2.2 元件製作@交大機械-微機電實驗室 46
4.3 元件特性量測 48
4.3.1 測試電路板設計與製作 48
4.3.2 S參數特性 49
4.4 量測結果 49
4.4.1 Sample 1系列 49
4.4.2 Sample 2系列 52
4.4.3 Sample 3系列 54
4.4.4 Sample 4系列 56
4.4.5 Sample 5系列 58
4.4.6 Sample 6系列 59
4.5 FT-IR實驗 61
第5章 結論 64
參考文獻 66

[1] R.B. Brown and E.T. Zellers, “Environmental Monitoring,” Environmental technology application, vol. 20, 1989
[2] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, 1998.
[3] P. Grant, J.Adam, J.Collins, “Surface Wave Device Applications in Microwave Communication Systems,” Communications, vol. 22, pp. 1410—1419, Sep. 1974
[4] C.C.W. Ruppel, R. Dill, A. Fischerauer, ”SAW devices for consumer communication applications,” Ultrasonics, Ferro- electrics and Frequency Control, vol. 40, pp. 438—452, Sept. 1993
[5] L. Reindl, C.C.W. Ruppel, S. Berek, U. Knauer, M. Vossiek, P. Heide, L. Oreans, “Design, fabrication, and application of precise SAW delay lines used in an FMCW radar system,” Microwave Theory and Techniques, vol. 49, pp. 787—794, April 2001
[6] D. Enguang, F. Guanping, “Organic vapor sensors based on SAW resonator and organic films,” Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 309—314, Mar. 1997.
[7] T. Nomura, R. Takebayashi, A. Saitoh, ”Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film,” Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, pp. 1261—1265, Sep. 1998
[8] M.S. Zaghloul, T.E. Taha, H.A.. Moustafa, K.E. Shennawy, “Modeling and simulation of fluid SAW-sensors under acoustic plate mode operation,” Instrumentation and Measurement, vol. 50, pp. 95—100, Feb. 2001.
[9] W. Buff, S. Klett, M. Rusko, J. Ehrenpfordt, M. Goroli, “Passive remote sensing for temperature and pressure using SAW resonator devices,” Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, pp. 1388—1392, Sept. 1998
[10] T. Nomura, K. Oofuchi, T. Yasuda, S. Furukawa, “SAW humidity sensor using dielectric hygroscopic polymer film,” Ultrasonics Symposium, 1994. Proceedings, vol. 1, pp. 503—506, 1994
[11] D.D. Stubbs, S.H. Lee, W.D. Hunt, “Molecular recognition for electronic noses using surface acoustic wave immunoassay sensors,” Sensors Journal IEEE , vol. 2, pp. 294—300, August 2002
[12] J. Kondoh, Y. Matsui, S. Shiokawa, ”SH-SAW biosensor based on pH change,” Ultrasonics Symposium, vol. 337-340, Nov. 1993
[13] H. Peng, C. Liang, D. He, L. Nie, S. Yao, “Bulk acoustic wave sensor using molecularly imprinted polymers as recognition elements for the determination of pyrimethamine,” Talanta, vol. 52, pp. 441—448, June 2000
[14] J. Curie and P. Curie, Bull. Soc. Min. France, vol. 3, pp. 90, 1880.
[15] Lord Rayleigh, “On waves propagating along the plane surface of an elastic solid,” Proc. London Math. Soc., vol. 17, pp. 4—11, 1885.
[16] R. M. White, F. W. Voltmer, ”Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett., vol. 7, pp. 314—316, 1965
[17] 吳德春, 「薄膜式表面聲波元件之製作與分析」, 中原大學, 碩士論文, 91年7月
[18] 吳朗, 電子陶瓷壓電, 全欣資訊圖書股份有限公司, 83年
[19] K. Tsubouchi, N. Mikoshiba, “Zero Temperature Coefficient SAW Devices on AlN Epitaxil Films,” IEEE Trans. Sonics Ultrason., vol. 5, pp. 634—643, 1985
[20] 許哲隆,「以氮化鎵為基板之表面聲波元件之研製」, 國立中央大學, 碩士論文, 91年7月
[21] Colin Campbell, Surface Acoustic Wave Devices and Their Signal Processing Applications, 1989.
[22] D.S. Ballantine, Acoustic wave sensors: theory, design, and physico- chemical applications, 1997
[23] 朱慕道,「表面聲波元件原理與應用」, 新電子光電元件, pp.183—186, 83年3月
[24] W.R. Smith, H.M. Gerard, J.H. Collins, “Design of Surface Wave Delay Lines with Interdigital Transducers,” Microwave Theory and Techniques, vol. 17, pp. 865—873, Nov. 1969
[25] M. Thompson, D. C. Stone, Surface-launched acoustic wave sensors : chemical sensing and thin-film characterization, 1997
[26] R.G. Kryshtal, A.V. Medved, V.V. Shemet, V.E. Zemlyakov, “Electronically tunable SAW chemosensor,” Electronics Letters , vol. 35 , pp. 676 - 678, Apr. 1999.
[27] 吳朗, 沈季燕, 沈煜棠, 「表面聲波SAW化學感測器」, Chemistry, vol. 59, no. 4, pp. 279—286, 90年6月
[28] 羅一中, 陳慶曰, 張劍紅, 「使用同步輻射光源的傅立葉變換紅外光譜顯微鏡技術及應用(上)」, 科儀新知, vol. 23, no. 4, pp. 63—71, 2001

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔