跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李諭銘
研究生(外文):Yu Ming Lee,
論文名稱:316L不鏽鋼電化學機械拋光機制探討研究
論文名稱(外文):Investigation of the polishing mechanism of ElectroChemical Mechanical Polishing (ECMP) technology
指導教授:李碩仁李碩仁引用關係
指導教授(外文):Shuo Jen Lee,
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:電化學機械拋光極化曲線電流時間曲線法拉第定律普林斯頓方程式
相關次數:
  • 被引用被引用:2
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
316L不鏽鋼由於抗蝕性佳,因此近年來被廣泛使用在生醫及半導體產業中。這些尖端科技中,為了確保產品的品質,因此對材料表面潔淨度的要求更是嚴格,甚至在使用前必須做特殊拋光處理增加其抗蝕性及提高潔淨度,減少在製程中所造成的污染。
而ECMP由於具電解作用因此在拋光後表面會生成一層緻密且潔淨的鈍化膜,這層鈍化膜的好壞對於材料的抗蝕能力有很大的影響。然而鈍化膜的長成與其機械性質對於ECMP中的電化學及機械效應有很大的關係。故本研究將以動電位極化曲線及電流時間曲線作為評估電解液及電化學效應對材料表面的影響,並以法拉第定律及普林斯頓方程式作為評估材料電化學及機械移除率的指標。
而在材料表面品質分析的部分將以表面粗度儀及光學顯微鏡觀察材料表面經ECMP後的影響,藉此作為評定拋光後材料品質的好壞。

目錄
第一章 序論......1
1.1 研究背景及目的.......1
1.2 研究目標.............2
1.3 文獻回顧.............3
1.4 論文架構.............7
第二章 研究理論簡介.........9
2.1 ECMP去除原理與機制........9
2.2 電化學相關理論............11
2.3 機械去除理論..............15
2.4表面微結構機械性質.........16
2.5抗蝕性評估-腐蝕測試........21
2.6 鈍化膜成分分析............23
第三章 研究方法與步驟.......25
3.1 研究流程與實驗步驟........25
3.2 實驗材料與設備............28
第四章 拋光機制評估.........34
4.1 電化學效應................34
4.2 機械效應..................42
第五章 表面品質分析.........66
5.1 腐蝕測試..................66
5.2 表面粗糙度與形貌觀察......69
第六章 結論與未來展望.......73
6.1 結論......................73
6.2 未來展望..................74
參考文獻......................76

1. J.A. Mc Gusseff, “Advanced methods of machining,” Chapman Hall, 1988.
2. Charles L. Faust, “Electropolishing I: The practical side, ” Metal Finishing, pp. 21—25, July, 1982.
3. Charles L. Faust, “Electropolishing II: The practical side, ” Metal Finishing, pp. 59—63, august, 1982.
4. Charles L. Faust, “Electropolishing ─ Stainless Steel Part I, ” Metal Finishing, pp. 53—56, febreary, 1983.
5. Charles L. Faust, “Electropolishing ─ Stainless Steel Part II, ” Metal Finishing, pp. 35—37, march, 1983.
6. C.O.A. Olsson and D. Landolt, “Passive films on stainless steels-chemical, structure and growth,” Electrochimica Acta, vol. 48, pp. 1093-1104, 2003.
7. P. Schmutz and D. Landolt, “In-situ microgravimetric studies of passive alloys: potential and potential step experiments with Fe-25Cr and Fe-17Cr-33Mo in acid and alkaline solution,” Corrosion Science vol. 41, pp. 2143-2163, 1999.
8. I. Betova and et. al., “Influence of the electrolyte composition and temperature on the transpassive dissolution of austenitic stainless steels in simulated bleaching solutions,” Electrochimica Acta, vol. 47, pp. 3335-3349, 2002.
9. I. Betova and et. al., “The transpassive dissolution mechanism of highly alloyed stainless steels II. Effect of pH and solution anion on the kinetics,” Corrosion Science vol. 44, pp. 2699-2723, 2002.
10. D. Landolt and et. al., “Electrochemical methods in tribocorrosion: a critical appraisal,” Electrochimica Acta, vol. 46, pp. 3913-3929, 2001.
11. D. Landolt, and et. al., “Third body effects and material fluxes in tribocorrosion systems involving a sliding contact,” Wear, vol. 256, pp. 517-524, 2004.
12. D. Landolt, and et. al., “The effect of mechanical and electrochemical parameters on the tribocorrosion rate of stainless steel in sulphuric acid,” Wear, vol. 255, pp. 466-475, 2003.
13. D. Landolt, and et. al., “The effect of contact configuration on the tribocorrosion of stainless steel in reciprocating sliding under potentiostatic control,” Corrosion Science vol. 45, pp. 625-640, 2003.
14. P. Jemmely, and et. al., “Electrochemical modeling of passivation phenomena in tribocorrosion,” Wear, vol. 237, pp. 63-76, 2000.
15. P. Jemmely, and et. al., “Tribocorrosion behaviour of Fe—17Cr stainless steel in acid and alkaline solutions,” Tribology International, vol. 32, pp. 295-303, 1999.
16. M. Seo and et al., “Nano-Electrochemistry of the iron (100) surface in solution,” Journal of Electroanalytical Chemistry, vol. 473, pp. 49-53, 1999.
17. M. Seo and et al., “Nano-Mechano-Electrochemistry of passive metal surfaces,” Electrochimica Acta, vol. 47, pp. 319-325, 2001.
18. M. Seo and et al., “Nano-Mechano-Electrochemical properties of passive titanium surfaces evaluated by in-situ Nano-indentation and Nano-scratching,” Electrochimica Acta, vol. 48, pp. 3221-3228, 2003.
19. S.Y. Chiu and et al., “The application of electrochemical metrologies for investigating chemical mechanical polishing of Al with a Ti barrier layer,” Materials Chemistry and Physics, vol. 82, pp. 444-451, 2003.
20. Y.L. Wang and et al., “Material Characteristics and Chemical-Mechanical Polishing of Aluminum Alloy Thin Films,” Thin Solid Films, vol. 332, pp. 397-403, 1998.
21. D. Zeidler and et al., “Characterization of Cu Chemical Mechanical Polishing by Electrochemical Investigations,” Microelectronic Engineering, vol. 33, pp. 259-265, 1997.
22. S.J. Lee and et. al., “The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel,” Journal of Materials Processing Technology, vol. 140, pp. 206-210, 2003.
23. J. Li and Dale J. Meier, “An AFM Study of the Properties of Passive Films on Iron Surface,” Journal of Electroanalytical Chemistry, vol. 454, pp. 53-58, 1998.
24. J. S. Newman, Electrochemical systems, 2nd ed., Prentice-Hall, Inc., 1991.
25. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, Inc., 1996.
26. 郭鴻曦,”鋁在化學機械拋光過程中之電化學行為研究,” 國立成功大學博士論文,民國88年。
27. D. Z. Chen and B. S. Lee, “Parameter analysis of chemical mechanical polishing: an investigation based on the pattern planarization model,” Journal of The ElectroChemical Society, vol. 146, pp. 3420-3424, 1999.
28. P. Wrschka and et. al., “Polishing parameter dependencies and surface oxidation of chemical mechanical polishing of Al thin films,” Journal of The ElectroChemical Society, vol. 146, pp. 2689-2696, 1999.
29. W. Chiu and et al., “Effect of mechanical process parameters on chemical mechanical polishing of Al thin films,” Microelectronic Engineering, vol. 65, pp. 13-23, 2003.
30. C.H. Turner and et. al., “The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques,” Journal of Biomechanics vol. 32, pp. 437-441, 1999.
31. J. N. Sneddon, Int. J. Eng. Sci., vol. 3, pp.47, 1965.
32. H. Hertz and J. R. Angew, Math. vol. 92, pp.156, 1882.
33. N. H. Kim and et. al., “Effects of phosphoric acid stabilizer on copper and tantalum nitride CMP,” Material Letters, vol. 57, pp. 4601-4604, 2003.
34. H. S. Kuo and et. al., “Effects of alumina and hydrogen peroxide on the chemical-mechanical polishing of aluminum in phosphoric acid base slurry,” Materials Chemistry and Physics, vol. 69, pp. 53-61, 2001.
35. N. J. Laycock and et. al., “The transpassive corrosion of stainless steel in stabilized alkaline peroxide solution,” Corrosion Science, vol. 37, pp. 1637-1642, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top