(44.192.10.166) 您好!臺灣時間:2021/03/06 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡旭倫
研究生(外文):Hsu-Lun Tsai
論文名稱:六軸油壓伺服控制機械臂的控制設計及實現
論文名稱(外文):Servo Control Design and Realization of Six Axis Hydraulic Actuator Robot
指導教授:陳傳生
指導教授(外文):Chwan-Hsen Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:40
中文關鍵詞:油壓伺服控制快速開發機械臂虛擬機械臂
外文關鍵詞:hydraulic servo controlrapid control prototypingrobotvirtual robot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
油壓伺服機械臂由於擁有較大的荷重能力,因此被廣泛應用於業界。然而油壓系統的高複雜度,使得開發控制器的難度也相對增加。
本文提出利用控制器快速建模(Rapid Control Prototyping)技術開發一六軸油壓伺服機械臂控制器。主控制器使用Mathworks的軟體MATLAB、SIMULINK、Real Time Workshop®設計後,載入xPCTarget嵌入式系統中執行。主控制器除了一般控制迴路外還提供利用Stateflow開發,具有不同操作模式的supervisory control。開發期間系統參數鑑別、控制迴路測試皆運用Hardware-in-the-Loop方式完成。使用者端人機介面除了能透過網路進行遠端控制外,尚包含現場實際影像與能動態反應機械臂姿態的3D虛擬機械臂。
控制器開發過程中先設計PI控制器,利用頻域閉迴路系統鑑別,鑑別出各軸系統模型,再使用LQR與RST二種控制器設計方法設計控制器,最後為降低摩擦力的影響,設計摩擦力補償器完成了機械臂控制器。使用控制器快速建模技術不僅縮短控制器開發時程,控制器與網路、視訊等結合更提供與用者一個安全而穩定的機械臂操作環境。

Hydraulic actuator robots are widely used in some industrial applications for their high load capacity. The controller design for hydraulic actuator robot is much more difficult, due to complicated hydraulic system.
This paper describes the rapid control prototyping (RCP) technology to design a control system for a six axis hydraulic servo robot. All real time software running in the robot controller is developed with MATLAB, SIMULINK, Real Time Workshop® and xPCTarget from Mathworks. We not only to design the feedback loop control level, but also to the supervisory control level for command-mode switching, event monitoring, and fault detection. The supervisory control functions are presented by the Stateflow block diagrams. Some conventional approaches to control design have to be adapted to the block-diagram approach in rapid control prototyping. The complete control system is supplemented with a networked user interface host computer for remote operation, the host computer provides video display, data monitoring, data logging, and real-time 3D animation to display current robot gesture.
We first design a digital PI controller and then we estimate the axis model by using frequency domain system identification. Finally we use LQR and RST strategy with friction compensator to design the controller. The built-in intelligence in the human machine interface help an operator achieves safer and smoother robotic application.

目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
第1章 緒論 1
1.1 研究動機 1
1.2 研究背景 1
1.3 文獻回顧 1
1.4 論文大綱 2
第2章 系統規劃 4
2.1 機械臂簡介 4
2.2 系統架構 4
2.3 硬體架構 5
2.4軟體架構 5
2.5監控控制(SUPERVISORY CONTROL)架構 6
第3章 模型推導 10
3.1 電液伺服閥(ELECTRO-HYDRAULIC SERVO VALVE)模型 10
3.1 旋轉致動器(ROTARY ACTUATOR)模型 11
3.3線性致動器(LINEAR ACTUATORS) 14
3.4 INVERSE-KINEMATICS計算 16
3.5 PI控制 17
3.6系統鑑別 18
第4章 控制器設計 22
4.1 LQR設計法則 22
4.2 RST設計法則 22
4.3 防止積分飽和(ANTI-WINDUP) 23
4.4 機械臂控制器設計 24
4.5 不含摩擦力補償之實驗結果 27
4.6 摩擦力補償 28
第5章 人機介面 32
5.1 虛擬機械臂 32
5.2 人機介面 36
第6章 結論與建議 38
參考文獻 39

參考文獻
[1] H. E. Merritt, ”Hydraulic Control Systems.” New York:Wiley,1967
[2] J. Heintze,, G. van Schothorst,, A.J.J. v.d. Weiden, P.C. Teerhuis, ”Modeling and Control of An Industrial Hydraulic Rotary Vane Actuator,” Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonlo, Texas, pp. 15-17, Dec. 1993
[3] H. Unbehauen, P Du, U Keuchel, “Application of a Digital Adaptive Controller to A Hydraulic System,” Control, 1988. CONTROL 88., International Conference on , pp. 13-15, Apr 1988
[4] B.d’Andrea-Novel, M.A. Garnero, A. Abichou, “Nonlinear Control of A Hydraulic Robot Using Singular Perturbations,” IEEE International Conference on Systems, Man, and Cybernetics, 'Humans, Information and Technology'. 1994.
[5] S.R. Habibi, A.A. Goldenberg,” Analysis and Control of Industrial Hydraulic Robots”, Proceedings of the 33rd IEEE Conference on Decision and Control, 1994.
[6] P. Lischinsky, C. Canudas-de-Wit, G. Morel,” Friction Compensation for An Industrial Hydraulic Robot,” Control Systems Magazine, IEEE , Volume: 19 , Issue: 1 , Feb. 1999,pp. 25 - 32
[7] Josko Deur, Danijel Pavkovic, Nedjeljko Peric, Martin Jansz, Davor Hrovat,” An Electronic Throttle Control Strategy Including Compensation of Friction and Limp-Home Effects,” Industry Applications, IEEE Transactions on , Volume: 40 , Issue: 3 , May-June 2004, pp. 821 - 834
[8] Cao Liyu, Howard M. Schwartz,” Stick-Slip Friction Compensation for PID Position Control,” American Control Conference, 2000, Proceedings of the 2000, Volume: 2, 28-30 June 2000, pp. 1078 - 1082 vol.2
[9] Shu Ning, Gary M. Bone,” High Steady-State Accuracy Pneumatic Servo Positioning System with PVA/PV Control and Friction Compensation,” Robotics and Automation, 2002, Proceedings, ICRA '02, IEEE International Conference, Volume: 3, 11-15 May 2002, pp. 2824 — 2829
[10] Tore Hagglund,” A Friction Compensator for Pneumatic Control Valves,” Journal of Process Control Volume: 12, Issue: 8, December, 2002, pp. 897-904
[11] B. Bona, M. Indri, “Friction Compensation and Robust Hybrid Control,” Robotics and Automation, 1993, Proceedings, 1993 IEEE International Conference on, 2-6 May 1993, pp. 81 - 86 vol.2
[12] Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, “Feedback Control of Dynamic Systems,” U.S.A, Prentice Hall, 2002
[13] Karl J. Åstrőm, Bjőrn Wittenmark,”Computer-Controlled Systems,” U.S.A, Prentice Hall, 3rd., 1997
[14] Microsoft,” DirectX (R) 8.1 SDK - Final Release,” U.S.A, 2001
[15] Bellamine, M., Abe, N., Tanaka, K., Taki, H., “Remote Machinery Maintenance System with The Use of Virtual Reality,” 3D Data Processing Visualization and Transmission, 2002. Proceedings. First International Symposium on , 19-21 June 2002 , pp:38 — 43
[16] Marin, R., Sanz, P.J., Sanchez, J.S., “A very high level interface to teleoperate a robot via Web including augmented reality,” Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on , Volume: 3 , 11-15 May 2002, pp:2725 - 2730

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔