跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/14 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳培恩
研究生(外文):CHEN PEI-EN
論文名稱:鋁質板材受撞擊破壞分析
指導教授:陳幼良
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:136
中文關鍵詞:彈道極限速度終端彈道模擬鋁質疊層板抗彈性能
外文關鍵詞:Ballistic limit
相關次數:
  • 被引用被引用:5
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究利用本院兵器系彈道館實驗設備來測試及探討各層厚度相同之多層防彈鋁板及單層鋁板(二者總厚度相同)遭受7.62 mm破片模擬彈頭、7.62×39mm全金屬軟套彈頭、7.62×51mm全金屬軟套彈頭、0.30” AP穿甲彈頭(Armor piercing)的貫穿機構破壞行為及抗彈性能的優劣。
整個研究流程先以實驗獲得相關資料庫後,再以數值模擬LS-DYNA軟體進行3D模擬來預測防彈鋁板材料相關複雜貫穿機構破壞行為和抗彈能力(V50)。此外,本研究依照不同剛體彈型(平彈頭和尖彈頭)實驗及經驗公式所獲得數值配合論文中彈道射擊測試結果來修正模擬所需破壞準則參數數值(Failure strain及Shear failure strain)。此修正破壞準則參數經比對後發現對於模擬次兵工速度(Sub ordnance velocity)-25~500 m/s左右速度之彈體撞擊,結果十分地理想。這對設定模擬的破壞參數值,提供一個可靠的依據。
本研究也針對實際彈頭形狀以改良剪力測試(依據ATSM D732剪力測試規範加以改良)的方式,分別對單層和多層鋁板以不同形狀壓頭來進行貫穿實驗。由改良剪力測試所有不同試片被貫穿所算出之貫穿能量值和槍擊實驗貫穿能量值加以整理後發現,對於不同彈型貫穿、不同鋁板試片總厚度及不同壓頭形狀,改良剪力測試所算出之貫穿能量值和實驗最小貫穿能量(即V50時之能量)之間是有一個特定的比例關係。
對於疊板結構,本論文利用古典疊層板理論配合塑性區材料參數均質化的假設來和LS-DYNA結合,針對多層不同鋁材質疊板提供一個均質化的方法。均質化的方法最主要的目的及貢獻在於用此方法可將多層疊板視為只需一個破壞準則來控制的單層鋁板以減少尋找各層鋁板破壞準則的時間及步驟。
本論文並針對實驗結果及電腦模擬結果來比較和預估在相同厚度情況下,多層及單層防護鋁板材料遭不同形狀彈頭撞擊之抗彈能力(即彈道極限速度V50值)、單層和多層防彈鋁板遭貫穿時鋁板破壞現象、彈體變形情況和均質化模擬多層板之可行性(將多層板視為單層板來進行模擬以求疊層板之彈道極限速度)。
In this paper, we utilize Ballistic Laboratory of Department of Weapon System Engineering of Chung-Cheng Institute of Technology to test and probe the benefit of monolithic and multi-layered structural plates(thickness of both plates are same)which are impacted by FSP (Fragment Simulated Projectile), 7.62×39mm FMJ (Full Metal Jacket), 0.30” AP (Armor Piercing ) and 7.62×51mm FMJ (Full Metal Jacket) bullets.
The whole procedure of this research is to get all the experiment data first, then use LS-DYNA 3D software to simulate all the complicated perforation circumstance and plate’s bulletproof capability(V50). Besides, experimental results obtained by shooting different bullet configurations(Flat and ogival shapes)and experience formulation are adopted to modify the needed value of simulation parameters(failure strain and shear failure strain). By comparing the simulation results with experiment results, it’s found that for subordnance velocity(velocity range 25~500 m/s) bullet impact, the modified failure criterion parameter can get a reasonable simulation results. This approach can therefore provide an accurate basis for simulation.
In this paper, the developed shear test(based on ATSM D732 procedure)is used to investigate the experiments for perforating single and multi-layer plates by different punch shapes. Comparing the calculated perforation energy of all the different plate specimens with gun shot experimental perforation energy, it’s found clearly that the perforation energy calculated by developed shear test has constant ratio relationship with gun shot experiment minimum perforation energy(the energy of V50)for different bullet shape, different multi-layer thickness and different punch shape.
For multi-layer plate structure, the Classical Theory of Laminated plates with equivalent material property parameters assumption of metal plastic zone is combined with LS-DYNA to provide an equivalent solution for different aluminium multi-layered plate structures. The main purpose is to save time and simulation procedure in finding failure criterion. When using equivalent solution, multi-layer plates structure is treated as a monolithic plate and only one failure criteria.
In this research, the experimental results are compared to the simulation. At the same plate thickness, the bulletproof capability(V50)of multi-layer and single-layer plates experienced different type of bullets, deforming and destroying situation of plates and bullets and the availability of equivqlent solution are investigated.
誌謝
摘要
ABSTRACT
目錄
表目錄
圖目錄
符號說明
1. 緒論
1.1 研究動機與目的
1.2 文獻回顧
1.3 研究範圍與限制
1.4 研究方法與架構
2. 實驗規劃和實驗方法
2.1 前言
2.2 實驗規劃
2.3 實驗方法(包含槍擊實驗和半靜態實驗)
2.3.1 槍擊實驗
2.3.2 改良剪力測試
3. LS-DYNA模擬軟體
3.1 LS-DYNA軟體簡介
3.2 模擬所選用的計算條件種類
3.3 程式 (Code)參數的驗證實例及建立模擬靶板的元素破壞準則
3.4 驗證實例的模擬驗證
4. 單層和多疊層板實驗和模擬結果
4.1 單層和多疊層板實驗結果
4.1.1 槍擊實驗結果
4.1.2 改良剪力測試實驗結果
4.2 單層和多疊層板撞擊模擬結果
4.2.1 相關模擬值和實驗值比較
4.2.2 彈頭及鋁板遭撞擊之變形和破壞比較
4.3 不同疊層數目配合不同總疊層厚度的模擬
5. 結合LS-DYNA和古典疊板理論來預估多層鋁板V50值
5.1 古典疊層板概述
5.2 使用均質化疊層板理論時在模擬環境所需做的設定
5.3 均質化疊層板之材料屬性及元素的破壞準則
5.4 模擬結果
6. 結論與建議
6.1 研究結論
6.2 後續研究方向與建議
參考文獻
自傳
[1]Marom, I. and Bodner, S. R., “Projectile Perforation of Muli-Layered Beams,” Int. J. Mesh. Sci, Vol.21, pp. 489-504, 1979.
[2]Woodward, R. L., Tracey, S. R., and Crouch, I. G., “The Response of Homogeneous and Laminated Metallic Sheet Material to Ballistic Impact,” J. Phy. Colloq, Vol C3 1, pp. C3 277-C3 282, 1991.
[3]Corran, R. S. J., Shadbolt, P. J., and Ruiz, C., “Impact Loading of Plates-An Experiment Investigation,” Int. J. Impact Engng, Vol. 1, pp. 3-22, 1983.
[4]Corbett, G. G., Reid, S. R., and Johnson, W.,“Impact Loading of Plates and Shells by Free-Flying Projectile:A Review” Int. J. Impact Engng, Vol. 18, pp. 141-230, 1996.
[5]Awerbuch, J. and Bodner, S. R., “Analysis of the Mechanics of Perforation of Projectiles in Metallic Plates,” Int. J. Solid Struct, Vol. 10 ,pp. 671-684, 1974.
[6]Nixdorff, K., “Some Applications of The Impact Theory of J. Awerbuch and S. R. Bodner,” Transactions of the CSME. Vol. 8, pp. 16-20,1984.
[7]Radin, J. and Goldsmith, W., “Normal Projectile Penetration and Perforation of Layered Targets,” Int. J. Impact Engng, Vol. 7, pp. 229-259, 1988.
[8]Gupta, N. K. and Madhu, V., “An Experimental Study of Normal and Oblique Impact of Hard-Core Projectile on Single and Layered Plates,” Int. J. Impact Engng, Vol. 19, pp. 395-414, 1997.
[9]Woodward, R. L. and Cimpoeru, S. J., “A Study of the Perforation of Aluminium Laminate Targets,” Int. J. Impact Engng, Vol. 21, pp. 117-131, 1998.
[10]Robert, R., Donald, L., Chol, S., Raymond, G., and Bruce, C., “Application of Metal Laminates to Aircraft Structure:Prediction of Penetration Performance,” Finite Element in Analysis and Design, Vol. 23, pp. 173-192, 1996.
[11]Zukas, J. A. and Scheffler, D. R., “Impact Effects in Multilayered Plates,”Int. J. Solid Struct, Vol. 38 , pp. 3321-3328, 2001.
[12]Hasan, K., Murat, B., and Azim, E., “Design Automation of a Laminated Armor for Best Impact Performance Using Approximate Optimization Method,” Int. J. Impact Engng, Vol. 29, pp. 397-406, 2003.
[13]Myungsoo, P., Jeonghoon, Y., and Dong-Teak, C., “An Optimization of A Multi-Layered Plate Under Ballistic Impact,” Int. J. Solid Struct, Vol. 42, pp. 123-137, 2005.
[14]Liang, C. C., Yang, M. F., Wu, P. W., and Teng, T. L., “Resistant Performance of Perforation of Multi-Layered Targets Using an Estimation Procedure with Marine Application,” Ocean Engineering, Vol. 32, pp. 441-468, 2005.
[15]Backman, M. E. and Goldsmith W., “The Mechanics of Penetration of Projectiles into Targets,” Int. J. Engng Sci, Vol. 16, pp. 1-99, 1978.
[16]Leppin and Woodward, R. L., “Perforation Mechanisms in Thin Titanium Alloy Target,” Int. J. Impact Engng, Vol. 4, pp. 107-115, 1986.
[17]Johnson, W., Chitkara, N. R. and Bex, P. A., “Characteristic Features in The Hole Flanging and Piercing of Thin and Thick Circule Layers Using Conical and Ogival Punches,” International Machine Tool Design and Research Conference, Birmingham, UK, pp. 695-701, 1974.
[18]Crouch, I. G., Baxter, B. J., and Woodward, R. L., “Empirical Tests of a Model for Thin Plate Perforation,” Int. J. Impact Engng, Vol. 9, pp. 19-33, 1990.
[19]Børvik, T., Langseth, M., Hopperstad, O. S., and Malo, K.A., “Perforation of 12mm Thick Steel Plates by 20mm Diameter Projectiles with Flat, Hemispherical and Conical Noses Part 1:Experimental Study,” Int. J. Impact Engng, Vol. b 27, pp. 19-35, 2002.
[20]Goldsmith, W. and Finnegan, S. A., “Penetration and Perforation Processes in Metal Targets At and Above Ballistic Limits,” Int. J. Mech. Sci, Vol. 13, pp. 843-866, 1971.
[21]Calder, C. A. and Goldsmith, W., “Plastic Deformation and Perforation of Thin Plates Resulting from Projectile Impact,” Int. J. Solids Struct. Engng, Vol. 7, pp. 863-881, 1971.
[22]Levy, N. and Goldsmith, W., “Normal Impact and Perforation of Thin Plates by Hemispherical Tipped Projectile,” Int. J. Impact Engng, Vol. 2, pp. 299-324, 1984.
[23]U.S.A. Department of Defense, “Millitary Standard V50 Ballistic Test for Armor,” MIL-STD-662F, December. Vol. 18, 1987.
[24]Debra, A. S., Allan C. J. O., and John, O. H., “Penetration Calcalation Using an Erosion Algorism in Dyna,” Proceeding of 12th International Symposium on Ballistics, pp. 208-217, San Antonio, Texas, Oct, Vol. 1, 1990.
[25]Guangyu, S., Junyan, G., and Chun, L., “Efficient Modeling of Panel-like Targets in Perforation Simulation,” Proceeding of 3rd European Symposium on LS-DYNA. http://www.dynalook.com/documents/3rd_European_ls-dyna/8.pdf。
[26]Kurtaran, H., Buyuk, M., and Eskandarian, A., “Ballistic Impact Simulation of GT Model Vehicle Door Using Finite Element Method,” Theoretical and Applied Fracture Mechanics, Vol. 40, pp. 113-121, 2003.
[27]Tore, B., Clausen, A. H., Odd, S. H., and Magnus, L., “Perforation of AA5083-H116 Aluminum Plates with Conical-Nose Steel Projectiles-Experimental Study,” Int. J. Impact Engng, Vol. 30, pp. 367-384, 2004.
[28]Chen, X. W. and Li, Q. M., “Perforation of a Thick Plate by Rigid Projectiles,” Int. J. Impact Engng, Vol. 28, pp. 743-759, 2003.
[29]Zukas, J. A., High Velocity Impact Dynamic, Computaional Mechaics Associates Towson, Maryland, pp. 443-451, 1988.
[30]Herakovich, C. T., Mechanics of Fibrous Composites, John wiley & Sons, U. S. A., 1998.
[31]Chrietensen, R. M., Mechanics of Composite Materials, Lawrene Livermore Labtory, Califonia, 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top