跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜博仁
研究生(外文):Tu, Po-Jen
論文名稱:聲光調變光纖被動元件的研究
論文名稱(外文):The Reserch of Acousto-Optic Modulations in Fiber Passive Components
指導教授:陳子江陳子江引用關係劉文豐劉文豐引用關係
指導教授(外文):Chen, Tzu-ChiangLiu, Wen-Fung
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:89
中文關鍵詞:聲光調變光纖光柵光纖耦合器
外文關鍵詞:Acousto-Optic ModulationFiber GratingsFiber Couplers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文可概括為六個部分;第一,探討塑膠光纖傳輸醫學影像之效能分析,利用光學模擬軟體ZEMAX 與光機模擬軟體ASAP來進行元件與系統的設計分析,可用來提昇影像傳輸的品質,使系統具架構簡單、低成本及輕巧方便的優點;第二,以寬頻光纖鏡(Broadband Fiber Mirror)及經蝕刻的布拉格光纖光柵(Etched Fiber Bragg Grating)組成的可調光纖雷射其可調波長範圍可達15奈米(nm),實驗結果說明此結構提出一個簡單又經濟的方法來時實現可應用於光纖光學及光纖通訊系統的波長可調光纖雷射;第三,利用泵送光源與摻鉺光纖與不同種類的光柵來完成環形光纖雷射,並得到最大可調變範圍約16nm。調變範圍可利用蝕刻技術隨光纖直徑的減少而增加;第四,提出Sinc-sampled光纖光柵(Fiber Grating)的聲光調變(Acousto-Optic)感應出多波道的效果,在原始頻道左右兩側感應的頻道波長可藉由沿光纖傳輸的聲波頻率來調整其位置;第五,實驗證實在斜角光纖光柵聲光調變的高階模態耦合現象由於雙重聲光調變重疊原理而得到好高的效能。第六,模擬多波長可調光濾波器得到一個不錯的結果,未來將與實驗結果進行驗證,期望能獲得與模擬結果一致。
In general this thesis is divided into six categories: (1) It explores the efficient analysis of plastic optical fibers used for medical image transmission. We use optical modeling software "ZEMAX" and optical-mechanical modeling software "ASAP" for designing an optical image transmission system and analyzing optical components in the system. It can be used to improve the image transmission system for the advantages of simple structure, low cost and convenient operation; (2) A wavelength-tunable fiber laser based on a broadband fiber mirror and an etched fiber Bragg grating (FBG) with a tuning range exceeding 15 nm. Experimental results indicate that this configuration provide a simple and economical method of implementing a wavelength-tunable fiber laser for applications in fiber optics or fiber communication systems; (3) A ring fiber laser based on the use of several kinds of fiber gratings, erbium-doped fibers and different pumping levels are demonstrated with the maximum tuning range of about 16nm. The tuning range can be improved by means of reducing the fiber diameter from the HF etching fiber technique; (4) It reports the acousto-optic induced multiband reflection in sinc-sampled fiber gratings, the induced-wavelength-channels at both sides of each existing channel can be switched by applying an acoustic wave propagating along the fiber; (5) The high-order-mode coupling of acousto-optic modulations in a tilted fiber grating is experimentally demonstrated to have the property of high efficiency superposition by two different acoustic sources and (6) Finally, the simulation of multi-band channel tunable optical filter is obtained with good results. In the future we will work toward the experiment and expect to have a good agreement between the simulation and experiment results.
誌謝…………………………………………………………………………………ii
摘要…………………………………………………………………………………iii
ABSTRACT…………………………………………………………………………iv
目錄…………………………………………………………………………………v
表目錄……………………………………………………………………………viii
圖目錄………………………………………………………………………………ix
符號說明……………………………………………………………………………xii
縮寫表………………………………………………………………………………xiv
1. 緒論 ………………………………………………………………………………1
1.1 研究動機 ………………………………………………………………………1
1.2 研究目的………………………………………………………………………2
1.3 章節介紹………………………………………………………………………2
2. 光纖主/被動元件…………………………………………………………………3
2.1 光纖光柵……………………………………………………………………3
2.2 光纖耦合器……………………………………………………………………4
2.3 光纖影像傳輸系統……………………………………………………………6
2.4 可調光雷射……………………………………………………………………16
2.4.1 基本原理………………………………………………………………17
2.4.2 實驗結果………………………………………………………………18
2.5 環形光纖雷射…………………………………………………………………23
2.5.1 切換雷射中心波長……………………………………………………29
2.5.2 調變雷射中心波長………………………………………………………33
3. 聲光調變…………………………………………………………………………41
3.1 光纖光柵聲光調變…………………………………………………………41
3.1.1 簡介…………………………………………………………………41
3.1.2 理論…………………………………………………………………42
3.1.3 實驗…………………………………………………………………44
3.2 雙重聲光調變………………………………………………………………48
3.2.1 簡介…………………………………………………………………48
3.2.2 理論…………………………………………………………………48
3.2.3 實驗及結果…………………………………………………………50
3.3 聲光耦合器…………………………………………………………………53
3.3.1 簡介…………………………………………………………………53
3.3.2 架構…………………………………………………………………53
3.3.3 理論…………………………………………………………………54
4. 可調波長光濾波器………………………………………………………………58
4.1 環形共振器之可調波長光濾波器…………………………………………58
4.1.1 理論…………………………………………………………………58
4.1.2 模擬…………………………………………………………………62
4.2 光纖鏡迴路之可調波長光濾波器…………………………………………66
4.2.1 理論…………………………………………………………………66
4.2.2 模擬…………………………………………………………………71
4.3 模擬可調波長光濾波器……………………………………………………73
5. 結論及未來展望…………………………………………………………………78
參考文獻……………………………………………………………………………80
論文發表……………………………………………………………………………88
自傳…………………………………………………………………………………89
[1] Erdogan, T., “Fiber Grating Spectra,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1277-1294, 1997.
[2] Albert, J., Hill, K. O., Malo, B., Theriault, S., Bilodeau, F., Johnson, D. C. and Erickson, L. E., “Apodization of the Spectral Response of Fibre Bragg Grtings Using a Phase-Mask with Variable Diffraction Efficiency,” Electronics Letters, Vol. 31, pp. 222-223, 1995.
[3] Malo, B., Theriault, S., Johnson, D. C., Bilodeau, F., Albert, J. and Hill, K. O., “Apodized in Fibre Bragg Grating Reflectors Photoimprinted Using a Phase Mask,” Electronics Letters, Vol. 31, pp. 223-224, 1995.
[4] Hill, K. O., “Aperiodic Distributed-Parameter Waveguides for Integrated Optics,” Applied Optics, Vol. 13, pp. 1853-1856, 1974.
[5] Matsuhara, M. and Hill, K. O., “Optical-Waveguides for Integrated Optics,” Applied Optics, Vol. 13, pp. 2886-2888, 1974.
[6] Vengsarkar, A. M., Pedrazzani, J. R., Judkins, J. B., Lemaire, P. J., Bergano, N. S. and Davison, C. R., “Long-Period Fibre-Grating–Based Gain Egualizers,” Optics Letters, Vol. 21, pp. 336-338, 1996.
[7] Agrawal, G. P. and Radic, S., “Phase-Shifted Fiber Bragg Gratings and Their Applications for Wavelength Demultiplexing,” Photonics Technology Letters, Vol. 6, pp. 995-997, 1994.
[8] Sheen, S. K. and Giallorenzi, T. G., “Single-Mode Fiber-Optical Powerdivider : Encapsulated Etching Technique,” Optics Letters, Vol. 4, pp. 29, 1979.
[9] Bergh, R. A., Kotler, G., Shaw, H. J., “Single-Mode Fiber Optic Directional Coupler,” Electronics Letters, Vol. 16, pp. 260, 1980.
[10] Ozeki, T. and Kawasaki, B. S., “New Star Coupler Compatible with Single Multimode-Fiber Data Linds,” Electronics Letters, Vol. 12, pp. 151, 1976.
[11] Ozeki, T. and Kawasaki, B. S., “New Star Coupler Compatible with Single Multimode-Fiber Data Linds,” Electronics Letters, Vol.12, pp. 151, 1976.
[12] Tsumanuma, T., Chigira, S., Sanada, K., Fukuda, O. and Inada, K., “Picture Image Transmission-System by Fiberscope,” Fujilura Technical Review, Vol. 15, pp.1-10, 1986.
[13] Kapany, N. S., Fiber Optics Principles and Applications, Academic Press, London, 1967.
[14] Fujiwara, K., Fujimoto, T., Yoshimura, K., Hattori, Y., Kyoto, M., Kadota, T., Matsuda, Y. and Chigusa, Y., “Remote Monitoring of Furnace Interiors by High-Resolution Silica Image Fiber,” 4th Int. Conf. Optical Fiber Sensors, OFS ’86, Tokyo, pp.147-150, 1986.
[15] Culshaw, B. and Dakin, J., Optical fiber Sensors, Systems and Applications, Artech House, 1989.
[16] Haney, M., Kostuk, R., Lund, C. and Schenfield, E., “Interconnect Signal Channel Density of Fiber Imaging Guides,” Parallel Interconnects, 1999. (PI '99) Proceedings, The 6th International Conference, pp.157 – 164, 17-19 Oct. 1999.
[17] Chiarulli, D. M., Levitan, S. P., Derr, P., Menon, R., Wattanapongsakorn, N., Greiner, B. and Robinson, M., “Multichannel Optical Interconnections using Imaging Fiber Bundles,” OSA Topical Meeting on Optics in Computing, Snowmass, CO., paper OWB3-1, pp.12-16, April, 1999.
[18] Yamauchi, R., Fujikura, Ltd. and Chiba, “Specialty Fibers,” Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS '94 Conference Proceedings. IEEE, Vol.2, 31 Oct., pp.228 – 229, Nov., 1994.
[19] Michael, K. L., Ferguson, J. A., Healy, B. G., Panova, A. A., Pantano, P. and Walt, D. R., “The Use of Optical-Imagining Fibers for the Fabrication of Array Sensors,” American Chemical Society, pp.273-288, 1998.
[20] Optical Design Program ZEMAX 10.0 User’s Guide, Focus Software,
Incorporated, April, 2001.
[21] Optical Modeling Software ASAP 7.0 Reference Manual, Breault Research Organization, 2001.
[22] Libatique, N. J. C. et al., “A Broadly Tunable Wavelength-Selectable DFB source using a fiber Sagnac loop filter,” Photonics Technology Letters, Vol.13, pp.1283-1285, 2001.
[23] Sakano, S. et al., “Tunable DFB laser with a striped thin film heater,” Photonics Technology Letters, Vol.4, pp.321-323, 1992.
[24] Honzatko, P. et al., “Modulational-Instability σ-Resonator Fiber Laser,” Optics Letters,Vol. 26, pp.810-812, 2001.
[25] Yamashita, S. and Hotate, K., “Distributed Pressure Sensor with A Mode-Locked Fiber-Ring Laser,” Optics Letters, Vol.26, pp.590–592, 2001.
[26] Mortimore, D. B., “Fiber Loop Reflectors,” Journal of Lightwave Technology, Vol. 6, No. 7, pp.1217-1224, 1988.
[27] Meltz, G. et al., “Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method,” Optics Letters, Vol.14, pp.823-825, 1989.
[28] Iain, D. M. et al., “A Nd+3-Doped CW Fiber Laser Using All-Fiber Reflectors,” Applied Optics, Vol. 26, No. 11, pp.2197-2201, 1987.
[29] Takahara, M., Yokoo, T. and Gomi, H., “Splice Effects of Er-Doped Fiber Amplifiers,” Singapore ICCS/’94
[30] Meunier, J. P. and Hosain, S. I., “An Accurate Splice Loss Analysis for Single-Mode Graded-Index Fibers with Mismatched Parameters,” Journal of Lightwave Technology, Vol. 10, No. 11, pp.1521-1526, 1992.
[31] Singh, M. P., Reese, J. O., Wei, T. M. and Storch, D. G., “Low-Loss Fusion Splicing of Erbium-Doped Optical Fibers for High Performance Fiber Amplifiers,” IEEE Transactions on Components Hybrids and Manufacturing Technology, Vol. 13, No. 4, pp.811-813, 1990.
[32] Farries, M. C., “Excited-State Absorption and Gain in Erbium-Fiber Amplifiers between 1.05 and 1.35 m,” Photonics Technology Letters, Vol. 3, July, 1991.
[33] Desurvire, E., “Erbium-Doped Fiber Amplifiers for New Generations of Optical Communication Systems,” Optical Photonics News 2, No. 1, pp. 6-11, Jan., 1991.
[34] Desurvire, E., Giles, C. R., Simpson, J. R. and Zyskind, J. L., “Efficient Erbium-Doped Fiber Amplifier at a 1.53μm Wavelength with a High Output Saturation Power,” Optics Letters, Vol. 14, pp. 1266-1268, 1990.
[35] Ozeki, T. and Kawasaki, B. S., “New Star Coupler Compatible with Single Multimode-Fiber Data Linds,” Electronics Letters, Vol.12, pp. 151, 1976.
[36] Archambault, J. L. and Grubb, S. G., “Fiber Grating in Laser and Applifiers,” Journal of Lightwave Technology, Vol. 15, pp.1277-1294, 1997.
[37] Alan, D. K., Michael, A. D., Heather, J. P., “Fiber Grating Sensor,” Journal of Lightwave Technology, Vol. 15, pp. 1442-1463, 1997.
[38] Kogelink, H. and Shank, C. V., “Coupled-Wave Theory of Distributed Feedback Lasers,” Journal of Applied Physics, Vol. 43, pp. 2327-2335, 1972.
[39] Chen, C. L., Elements of Optoelectronics and Fiber Optics, Chicago: Irwin, 1996.
[40] 楊淑媚,工業技術人才培訓計畫講義,工業技術研究所光電工業研究所,2001。
[41] Sigman, A. E., Lasers, Mill Valley, 1986.
[42] Li, Z., Lou, C., and Gao, Y., “A Polarization Controlled Multiwavelength Er-Doped Fiber Laser,” Communications, 1999. APCC/OECC '99. Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference , Vol. 2 , pp. 1506-1508, Oct., 1999.
[43] Song, Y. W., Havstad, S. A., Starodudov, D., Xie, Y., Willner, A. E. and Feinberg, J., “40-nm-Wide Tunable Fiber Ring Laser with Single-Mode Operation Using a Highly Stretchable FBG,” Journal of Lightwave Technology, Vol. 13, Nov., 2001.
[44] Liu, B., Shakouri, A. and Bowers, J. E., “Wide Tunable Double Ring Resonator Coupled Lasers,” Photonics Technology Letters, Vol. 14, May, 2002.
[45] Huang, D. W., Characterization of Fiber and Their Applications to Fiber Lasers, 1999.
[46] Liu, W. F., Russell, P. St. J. and Dong, L., “Acousto-Optic Superlattice Modulator Using Fiber Gratings,” Optics Letters, Vol. 20, pp.1515-1517, 1997.
[47] Liu, W. F., Dong, L., Russell, P. St. J., Reekie, L. and Culverhouse, D. C., “Improved Efficiency Narrow-Band Acoustooptic Tunable Reflector Using Fibre Bragg Grating,” OSA Annual Meeting in Bragg gratings, PD4, Williamsburg, VA, USA, 1997.
[48] Liu, W. F., Russell, P. St. J. and Dong, L., “100% Efficient Narrow-Band Acoustooptic Ttunable Reflector Using Fiber Bragg Grating,” Journal of Lightwave Technology, Vol. 16, 1998.
[49] Russell, P. St. J., “Optical Superlattice for Modulation and Deflection of Light,” J. Appl. Phys., Vol. 59, pp.3344-3355, 1986.
[50] Russell, P. St. J., “Bragg Resonance of Light in Optical Superlattice,” Phys. Rev. Lett., Vol. 56, pp.596-599, 1986.
[51] Russell, P. St. J., “Bloch Wave Analysis of Dispersion and Pulse Propagation in Pure Distributed Feedback Structures,” J. Mod. Opt., Vol. 38, pp.1599-1619, 1991.
[52] Kim, B. Y., Blake, J. N., Engan, H. E. and Shaw, H. J., “All-Fiber Acousto-Optic Frequency Shifter,” Optics Letters, Vol. 11, pp.389-391, 1986.
[53] Blake, J. N., Kim, B. Y., Engan, H. E. and Shaw, H. J., “Analysis of Intermodal Coupling in a Two-Mode Fiber with Period Microbends,” Optics Letters, Vol. 12, pp.281-283, 1987.
[54] Berwick, M., Pannell, C. N., Russell, P. St. J. and Jackson, D. A., “Demonstration of Birefringent Optical Fibre Frequency Shifter Employing Torsional Acoustic Waves,” Electronics Letters, Vol. 27, pp.713-715, 1991.
[55] Birks T. A., Farwell S. G., Russell P. St. J. and Pannell C. N., “Four-Port Fibre Frequency Shifter with a Null Taper Coupler,” Optics Letters, Vol. 19, pp.1964-1966, 1994.
[56] Ibsen, M., Durkin, M. K., Cole, M. J. and Laming, R., “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” Photonics Technology Letters, Vol. 10, pp. 842-844, 1998.
[57] Kim, B. Y., Blade, J. N., Engan, H. E. and Shaw, H. J., “All-Fiber Acousto-Optic Frequency Shifter,” Optics Letters, Vol. 11, pp.389, 1986.
[58] Huang, D. W., Liu, W. F., Wu, C. W., and Yang, C. C., “Reflectivity-Tunable Fiber Bragg Grating Reflectors,” Photonics Technology Letters, Vol. 12, p.176, 2000.
[59] Liu, W. F., Liu, I. M., Chung, L. W., Huang, D. W., and Yang, C. C., “Acoustic-Induced Switching of the Reflection Wavelength in a Fiber Bragg Grating,” Optics Letters, Vol. 25, p.1319, 2000.
[60] Fu, M. Y., Liu, W. F., Chen, T. C. and Sheng, H. J., “Acousto-Optic-Induced Cladding-Mode Reflection in a Blazed-Superstructure Fiber Grating,” IEEE Photonics Technology Letters, Vol. 15, p.1392, 2003.
[61] Sun, N. H., Chou, C. C., Chang, M. J., Lin, C. N., Yang, C. C., Kiang, Y. W. and Liu, W. F., “Analysis of Phase-Matching Conditions in Flexural-Wave Modulated Fiber Bragg Grating,” Journal of Lightwave Technology, Vol. 20, p.311, 2002.
[62] Chen, T. C. and Fu, M.Y., “Acoustic-Induced Tunable Wavelength in a Tilted Fiber Bragg Grating”, Jpn. J. Appl. Phys., Vol. 43, p.200, 2003.
[63] Xu, J. and Stroud, R., Acousto-Optic Principles: Design, and
Applications, Wiley, New York, 1992.
[64] Birks, T. A., Russell, P. St. J. and Culverhouse, D. O., “The Acousto-Optic Effect in Single-Mode Fiber Tapers and Couplers,” Journal of Lightwave Technology, Vol.14, pp.2519-2529, 1996.
[65] Birks, T. A. and Russell, P. St. J., “Control of Bandwidth in Fiber Acousto-Optic Tunable Filters and Other Single Mode Null Coupler Devices,” CLEO’97, CThW2 4:45 pm.
[66] Culverhouse, D. O., Yun, S. H., Richardson, D. J., Birks, T. A., Farwell, S. G. and Russel, P. St. J., “All-Fibre Acousto-Optic Tunable Filter Based on a Null Coupler,” 22nd European Conference on Optical Communication, ECOC’96, Oslo, pp.317-320, 1996.
[67] Birks, T. A., Russell, P. St. J. and Pannell, C. N., “Low Power Acousto-Optic Device Based on a Tapered Single-Mode Fiber,” Photonics Technology Letters, Vol.6, pp.725-727, 1994.
[68] Birks, T. A., Farwell, S. G., Russell, P. St. J. and Pannell, C. N., “Four-Port Fiber Frequency Shifter with a Null Taper Coupler,” Optics Letters, Vol.19, pp.1964-1966, 1994.
[69] 許溢适,壓電陶瓷新技術,文笙書局,民國八十五年四月。
[70] Technical Manual, Piezoelectric Ceramics, Channel Industries, INC. (SLEO Photonics Co., Ltd.)
[71] Birks, T. A., Russell, P. St. J. and Culverhouse, D. O., “The Acousto-Optic Effect in Single-Mode Fiber Tapers and Couplers,” Journal of Lightwave Technology, Vol.14, pp.2519-2529, 1996.
[72] Blake, J. N., Kim, B. Y., Engan, H. E. and Shaw, H. J., ”Analysis of Intermodal Coupling in a Two-Mode Fiber with Periodic Microbends,” Optics Letters, Vol.12, pp.281-283, 1987.
[73] Farwell, S. G., Culverhouse, D. O., Birks, T. A. and Russell, P. St. J., “Low-Loss All-Fibre Amplitude Modulator at 1.55 m,” Electronics Letters, Vol.32, pp.577-578, 1996.
[74] Birks, T. A., Wadsworth, W. J., and Russell, P. St. J., “Supercontinuum Generation in Fused Fibre Couplers,” CLEO 2001, CThH1 10:15 am.
[75] Vargas, S., Vazquez, C., “New Optical Filter Employing Multireflection Mirror to Provide Design Flexibility for WDMA,” LEOS 2000. 13th Annual Meeting. IEEE, Vol. 2, pp.480-481, Nov. 2000.
[76] Vazquez, C., Hernandez-Gil, J. F. and Lopez, A. M., “Tunable Ring Resonator Filter for OFDM Transmission Systems,” Optics Letters, Vol. 8, pp.321-323, 1995.
[77] Harol, M. S., “Optimally Coupled, GaAs-Distributed Bragg Reflection Lasers,” IEEE Transactions on Circuits and Systems, Cas-26, pp.1065-1072, Dec. 1979.
[78] Vargas, S., Vazquez, C., Pena, J. M. S., “Novel Tunable Optical Filter Employing a Fiber Loop Mirror for Synthesis Applications in WDM”, LEOS 2001, 14th Annual Meeting of the IEEE , Vol. 2, pp.899-900, Nov. 2001.
[79] Kim, S. and Lee, B., “Recirculating Fiber Delay-Line Filter with a Fiber Bragg Grating,” Applied Optics, Vol.37, Aug. 1998.
[80] Jianluo, Z., John, W. Y. L., “Compound Fiber Ring Resonator Theory,” J. Opt. Soc. Am. A, Vol. 11, pp.1867-1873, Jun. 1994.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top