跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂少君
研究生(外文):Shao-Jun Lu
論文名稱:應用混合差分進化演算法及動態規劃法於發輸電系統虛功補償與調度
論文名稱(外文):Application of Hybrid Differential Evolution and Dynamic Programming to Reactive Power Compensation and Dispatch for Generation-Transmission Systems
指導教授:蘇慶宗蘇慶宗引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:93
中文關鍵詞:混合差分進化演算法
相關次數:
  • 被引用被引用:5
  • 點閱點閱:771
  • 評分評分:
  • 下載下載:212
  • 收藏至我的研究室書目清單書目收藏:2
摘 要
電力是所有經濟活動及日常生活的主要能源,穩定可靠的電力供應是所有國家努力追求的目標。由於實際的電力系統中存在著許多虛功的負載造成系統中電壓、電流相角差異,因此產生虛功率的流動,造成線路電壓降低、增加線路損失、減少供電容量。電力業者無不致力於追求在電力系統經濟且安全的運轉下,提供更穩定可靠的電力來滿足用戶的需求。本文旨在探討最佳虛功補償的方法供電力系統安全經濟運轉。
電力系統虛功補償及安全經濟運轉問題為一最佳化的問題,求解該問題以決定經濟的發電量及適當的虛功率補償位置與數量。經由發電機組實功率輸出量的經濟調度來達到最小的發電成本。另外以發電機組及電容器組的虛功率輸出來提供系統所需的虛功補償,並藉以控制匯流排的電壓及輸電線流量。本文提出應用混合型差分進化演算法來解此一最佳化問題。本文求解過程分成兩個階段,第1個階段:建立含發電機發電成本及電容器裝置成本組成之目標函數,在系統電壓可容忍的範圍內,應用混合差分進化法決定電容器的最佳裝設位置及容量,使系統中發電成本與裝置電容器費用兩者之總成本為最低。第2階段:應用動態規劃法並依據虛功需量的變化針對可切換電容器組作調度。藉由輸電線損失目標函數的最小化,使輸電線上電壓可以保持在規定值之內以及減少線路損失。
最後,本研究以9個匯流排及30個匯流排等兩個系統來說明本研究方法的應用及驗證其效能。
Abstract
Power is a major energy for all economic activities and livelihood today. Every country pursuits the goal of supplying stable power. Reactive loads existed in a power system caused phase differences for both voltages and currents, result in reactive power flowing in the system and lead to voltage drop and power loss in power lines which in turn reduce the use-capacity of the power supplying system. The electric power utility always pursues stable and reliable electricity supply to satisfy the requirements of consumers in a way of economic and secure operation for the power system. This thesis is an attempt to explore methods providing optimal reactive power compensation for security-constrained economic operation of power systems.
The problem of reactive power compensation for security-constrained economic operation of power systems is an optimization problem, which looks for both the economic power generation and the appropriate place and quantity for reactive power compensation. Real power outputs of generation units are economically dispatched to reach a minimum generation cost, whereas reactive power outputs of generation units and capacitor banks are appropriately dispatched to compensate the reactive power requirement of the system and control the bus voltage as well as line flows. The problem under study is an optimization problem and is to be solved using the hybrid differential evolution (HDE) method. The solution procedures are divided into two stages. First, an objective function consisting the power generation cost of the generators and the installation cost of the capacitors is defined. The hybrid differential evolution algorithm is employed to decide the optimal position and size of capacitors for installation. Secondly, the dynamic programming is employed to dispatch the switch capacitors according to the reactive power demand variation. Applying the dynamic programming yields an operation scheme for the installed switchable capacitors to ensure the specified voltage limits and reduce the power loss.
Application of the proposed approach is demonstrated and verified using two application systems including a 9-bus and a 30-bus systems.
目 錄
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
圖目錄 Ⅶ
表目錄 Ⅸ
符號表 ⅩⅡ
第一章 緒論 1
1-1 研究背景及動機 1
1-2 文獻回顧 3
1-3 研究內容概述 5
第二章 電力潮流分析 7
第三章 混合差分進化法與動態規劃法 10
3-1 差分進化法 10
3-2 混合差分進化法 14
3-3 動態規劃法 19
第四章 數學模式及解法 22
4-1 問題描述 22
4-2 目標函數與限制條件說明 22
4-3 求解步驟說明及流程圖 29
第五章 範例應用與討論 33
5-1 9個匯流排應用系統說明 33
5-2 9個匯流排系統計算結果與討論 37
5-3 9個匯流排系統以動態規劃法作一日電容器組調度 49
5-4 30個匯流排應用系統說明 55
5-5 30個匯流排系統計算結果與討論 61
5-6 30個匯流排系統以動態規劃法作一日電容器組調度 79
第六章 結論與建議 87
6-1 結論 87
6-2 未來的研究建議 88
參考文獻 89
參 考 文 獻
[1]Y. C. Lin., F. S. Wang, and K.S. Hwang, “A Hybrid Method of Evolutionary Algorithm for Mixed-Integer Nonlinear Optimization Problems,” IEEE Conference on Evolutionary Computation, pp. 2159-2166, 1999.
[2]H. Duran, 〝Optimum Number, Location, and Size of Shunt Capacitors in Radial Distribution Feeder:A Dynamic Programming,〞IEEE Trans. on Power Apparatus and Systems,Vol.87,No.9,pp.1769-1774,1968.
[3]Y. Y. Hsu and F. C. Lu,〝Reactive Power/Voltage Control in a Distribution System Using Dynamic Programming,〞IEE Proc. –Gener. Transm.Distrib. Vol.142, No.6,pp.639-645,1993.
[4]Y. Y. Hsu and H.C. Kuo,〝Dispatch of Capacitors on Distribution Sys- tems/Using Dynamic Programming,〞IEE Pro. –Gener. Transm. Distrib. Vol.140, No.6,pp.433-438,1993.
[5]劉浚明,數學規劃-理論與實務,國立編譯館,第八章動態規劃,第361-368頁,84年9月。
[6]A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, John Wiley & Sons, Inc, 1996.
[7]H. H. Happ, “Optimal Power Dispatch a Comprehensive Survery,” IEEE Transactions on Power Apparatus and Systems, Vol. 96, No. 3, pp.841-854, May, 1977.
[8]A. A. E1-Keib, H. Ma, and J. L. Hart, “Environmentally Constrained Economic Dispatch Using the Lagrangian Relaxation Method,” IEEE Transactions on Power Systems, Vol. 9, No. 4, pp. 1723-1729, November, 1994.
[9]A. Farag, S. A. Baiyat, and T.C. Cheng, “Economic Load Dispatch Multiobjective Optimization Procedures Using Linear Programming Techniques,” IEEE Transactions on Power Systems, Vol. 10, No. 2, pp. 731-738, May, 1995.
[10]R. H. Liang and Y. Y. Hsu, “Scheduling of Hydroelectric Generations Using Artificial Neural Networks,” IEE Proc. Generation, Transmission and Distribution, Vol. 141, No. 5, pp. 425-458, 1994.
[11]K. P. Wong and C.C. Fung, “Simulated Annealing Based Economic Dispatch Algorithm,” IEE Proc. Generation, Transmission and Distribution, Vol. 140, No. 6, pp. 509-515, Noverber, 1993.
[12]D. C. Walters and G.B. Sheble, “Genetic Algorithm Solution of Economic Dispatch with Valve Point Loading,” IEEE Transactions on Power Systems, Vol. 8, No. 3, pp. 1325-1332, August, 1993.
[13]田文村,應用加強型基因演算法解電力系統經濟調度問題,碩士論文,國立中正大學電機工程研究所,民國88年1月。
[14]李曙廷,差分進化演算法於電力系統經濟運轉之應用,碩士論文,國立中正大學電機工程研究所,民國88年7月。
[15]尤國益,應用進化策略作最佳電力潮流,碩士論文,國立雲林科技大學電機工程研究所,民國90年6月。
[16]G. Opoku, “Optimal Power System VAR Planning,” IEEE Transactions on Power Systems, Vol. 5, No. 1, pp. 53-60, 1990.
[17]K. Lba, H. Suzuki, K. Suzuki, and K. Suzuki, “Practical Reactive Power Allocation / Operation Planning Using Successive Linear Programming,” IEEE Transactions on Power Systems, Vol. 3, No. 2, pp.558-566, 1988.
[18]S. Granville, M. V. F. Pereira, and A. Monticelli, “An Integrated Methodology for VAR Sources Planning,” IEEE Transactions on Power Systems, Vol. 3, No. 2, pp. 549-557, 1988.
[19]Y. Y. Hong, D. I. Sun, S. Y. Lin, and C. I. Lin, “Multi-year Multi- case Optimal VAR Sources Planning,” IEEE Transactions on Power System, Vol. 5, No. 4, pp. 1294-1301, 1990.
[20]Y. T. Hsiao, H. D. Chiang, C. C. Liu, and Y. L. Chen, “A New Approach for Optimal VAR Sources Planning in Large Scale Electric Power Systems,” IEEE Transactions on Power Systems, Vol. 8, No. 3, pp. 988-996, 1993.
[21]Y. T. Hsiao, H. D. Chiang, C. C. Liu, and Y. L. Chen, “A Computer Package for Optimal Multi-objective VAR Planning in Large Scale Power Systems,” IEEE Transactions on Power Systems, Vol. 9, No. 2, pp. 668-676, 1994.
[22]K. Lba, “Reactive Power Optimization by Genetic Algorithm,” IEEE Transactions on Power Systems, Vol. 9, No. 2, pp. 685-692, 1994.
[23]J. R. S. Mantovani and A. V. Garcia, “A Heuristic Method for Reactive Power Planning,” IEEE Transactions on Power Systems, Vol. 11, No. 1, pp. 68-74, 1996.
[24]L. L. Lai and J. T. Ma, “Application of Evolutionary Programming to Reactive Power Planning Comparison with Nonlinear Programming Approach,” IEEE Transactions on Power Systems, Vol. 12, No. 1, pp. 198-206, 1997.
[25] L. L. Lai and J. T. Ma, “Practical Application of Evolutionary Computing to Reactive Power Planning,” IEE Proc. -Gener. Transm. Distrib., Vol. 145, No. 6, pp. 753-758, 1998.
[26]S. Hao and A. Papalexopoulos, “Reactive Power Pricing and Management,” IEEE Transactions on Power Systems, Vol. 12, No. 1, pp. 95-104, Feb, 1997.
[27]M. L. Baughman and S. N. Siddiqi, “Real Time Pricing of Reactive Power: Theory and Case Study Results,” IEEE Transactions on Power Systems, Vol. 6, No. 1, pp. 23-29, Feb,1991.
[28]J. Y. Choi, S. H. Rim, and J. K. Park, “Optimal Real Time Pricing of Real and Reactive Powers,” IEEE Transactions on Power Systems, Vol. 13, No. 4, pp. 1226-1231, Nov, 1998.
[29]N. H. Dandachi, M. j. Rawlins, O. Alsac,M.Parais, and B. Stott, “OPF for Reactive Pricing Studies on the NGC System,” IEEE Transactions on Power Systems, Vol. 11, No. 1, pp. 2014-2019, Feb, 1996.
[30]J. B. Gil, T. G. S. Roman, J. J. A. Rios, and P. S Martin, “Reactive Power Pricing: A Conceptual Framework for Remuneration and Charging Procedures,” IEEE Transactions on Power Systems, Vol. 15, No. 2, pp. 483-489, May, 2000.
[31]John W. Lamont and Jian Fu, “Cost Analysis of Reactive Power Support,” IEEE Transactions on Power Systems, Vol. 14, No. 3, pp. 890-898, August, 1999.
[32]Y. Dai, X. D. Liu, Y. X. Ni, F. S. Wen, Z. X. Han, C. M. Shen, and Felix F. Wu, “A Cost Allocation Method for Reactive Power Service Based on Power Flow Tracing,” Electric Power Systems Research, No.64, pp. 59-65, 2003.
[33]廖基宏,應用電力追蹤探討電力代輸成本,碩士論文,國立中正大學電機工程研究所,民國89年7月。
[34]Gharles A. Gross, Power System Analysis, John Wiley & Sons, Inc. 1986.
[35]李居昇,配電系統最佳饋線重組與電容配置,博士論文,國立中正大學電機工程研究所,民國91年12月。
[36]R. Storm and K. Price, “Minimizing the Real Function of the ICEC’96 Contest by Differential Evolution,” IEEE Conference on Evolutionary Computation, Nagoya, Japan, pp. 842-844, May, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top