(18.210.12.229) 您好!臺灣時間:2021/02/26 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳毓恩
研究生(外文):Yu-En Wu
論文名稱:加權電流分配控制換流器並聯系統
論文名稱(外文):Parallel Inverter System with Current-Weighting-Distribution-Control Strategy
指導教授:吳財福
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:106
中文關鍵詞:換流器並聯系統加權電流控制主僕式控制容錯熱拔插操作
外文關鍵詞:Parallel Inverter systemCurrent-weighting-Distribution-ControlMaster-Slave ControlFault-ToleranceHot-Swap Operation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:384
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在本論文中提出一種具加權電流分配控制(CWDC)的換流器並聯系統, 由於CWDC的控制方式, 允酗ㄕPpower ratings的換流器並聯操作, 並利用加權電流分配電路, 使並聯的換流器達到加權電流分配的效果; 而此加權電流分配電路只要一些簡單的電路即可實現. 在本文提出的並聯系統中, 每一台換流器具有內電流迴路控制器,以提升系統的動態響應; 外電壓迴路控制器作為輸出電壓的穩壓, 及一個加權電流控制器, 來達到電流分配及減少換流器相互作用的效果. 本文分別以一三台換流器並聯系統與一六台換流器並聯系統為例, 來驗證所提出的控制策略之可行性, 並分別以模擬與實測的結果來說明本系統的彈性與可靠度.
最後, 為了提升系統的動態響應與加權電流分配的準確性, 在原來的CWDC架構中加入Voerr-sharing的技術, 使本文的多模組換流器系統兼具高可靠度, 高擴充性及高維護力的效果.
ABSTRACT
A current-weighting-distribution-control (CWDC) strategy for multi-inverter systems to achieve current sharing is presented in this dissertation. With the CWDC strategy, the inverters connected in parallel are allowed to have different power ratings and can achieve a weighted-output-current distribution by adding only simple circuits to each inverter. In such systems, each inverter has an outer-voltage-loop controller to govern system stability, an inner-current-loop controller to expedite dynamic response, and a weighting-current controller to achieve current distribution and to reduce possible interactive effects among inverters. Simulation results and experimental measurements from a three-inverter and six-inverter systems with either identical or different power ratings have demonstrated the feasibility of the proposed strategy in weighting-current distribution and fast regulation during a step-load change or hot-swap operation.
Finally, the regular CWDC strategy with Voerr-sharing scheme is proposed to improve weighting-current distribution and system dynamic response during load variations. The Voerr-sharing scheme is constituted by a Voerr-distribution circuit and used to share the Voerr signal according to the power rating of each inverter. Thus, the proposed multi-inverter system possesses the features of high reliability, expandability and maintainability. In addition, weighting-current distribution is more precise and the dynamic response is faster over the regular CWDC strategy.
TABLE OF CONTENTS
ACKNOWLEDGEMENT I
TABLE OF CONTENTS II
LIST OF FIGURES IV
LIST OF TABLES IX
NOMENCLATURE X
ABSTRACT XII
1. Introduction 1
1.1 Background and Motivation 1
1.1.1 Background 1
1.1.2 Motivation 3
1.2 Review of previous works 6
1.3 Dissertation outline 11
2. Analysis and Design of a Single Inverter 14
2.1 Introduction 14
2.2 Configuration of the designed single-inverter 15
2.2.1 Sinusoidal pulse-width-modulation 17
2.2.2 Design of output filter 19
2.2.3 Design of snubber circuit 22
2.3 Analysis of small-signal modeling 23
2.4 Analysis of the control strategy 26
2.5 Design of the inner and outer loop controllers 32
2.6 Discussion 37
3. Configuration of a Parallel-Inverter System 38
3.1 Introduction 38
3.2 System configuration and operation 39
3.3 Weighting-current-distribution circuit 41
3.4 Discussion 45
4. Modeling and Controller Design for the Parallel-Inverter System 46
4.1 Introduction 46
4.2 Modeling 47
4.3 Design of the weighting current controller 49
4.4 Redundancy of master inverter module 51
4.5 Discussion 54
5. Simulated and Experimental Results 55
5.1 Simulated and experimental results of the single-inverter system 55
5.2 Simulated and experimental results of the parallel-inverter system 67
5.2.1 With identical power ratings 68
5.2.2 With different power ratings 74
5.3 Hot-Swap operation 79
5.4 Redundancy operation 82
5.5 Discussions 84
5.5.1 Limitations of the conventional CWDC strategy 84
5.5.2 Improvement of the current-sharing and dynamic response 87
6. Conclusions and Future Research 94
6.1 Conclusions 94
6.2 Future research 96
APPENDIX 99
REFERENCES 101
VITA 104
PUBLICATIONS 105
REFERENCES
[1] W. A. Tabisz, M. M. Jovanovic, and F. C. Lee, “Present and Future of Distributed Power Systems,” Proceedings of the IEEE Applied Power Electricsital, pp. 11-18, 1992.
[2] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A Classification and Evaluation of Paralleling Methods for Power Supply Modules,” Proceedings of the IEEE Power Electrics Specialists Conf., pp. 901-908, 1999.
[3] Y.-K. Chen, T.-F. Wu, Y.-E. Wu, and C.-P. Ku, ”A Current-Sharing Control Strategy for Paralleled Multi-Inverter Systems Using Microprocessor-Based Robust Control,” Proceedings of the IEEE TENCON, pp 647-653, 2001.
[4] P. Dobrorolny, J. Woods, and P. D. Ziogas, “A Phase-locked-loop Synchronization Scheme for Parallel Operation of Modular Power Supplies,” Proceedings of the IEEE Power Electronics Specialists Conf., pp. 861-869, 1989.
[5] J.-F. Chen, C.-L. Chu, and O.-L. Huang, “The Parallel Operation of Two UPS by the Coupled-Inductor Method,” Proceedings of the Industrial Electronics, Control and Instrumentation, pp. 733-736, 1992.
[6] Y. Y. Tzou, “DSP-Based Fully Digital Control of a PWM DC-AC Converter for AC Voltage Regulation,” Proceedings of the IEEE Power Electronics Specialists Conf., pp. 138-144, 1995.
[7] M. J. Ryan and R. D. Lorenz, “A High Performance Sine Wave Inverter Controller with Decoupling,” Proceedings of the IEEE Power Electronics Specialists Conf., pp. 507-513, 1995.
[8] J.-F. Chen and C.-L. Chu, “Combination Voltage-Controlled and Current-Controlled PWM Inverters for UPS Parallel Operation,” IEEE Trans. on Power Electronics, Vol. 10, No. 5, pp. 547-558, September 1995.
[9] A. Tuladhar, H. Jin, T. Unger, and K. Mauch, “Parallel Operation of Single Phase Inverter” Proceedings of the IEEE Applied Power Electronics conf. and Exposition, pp. 94-100, 1997.
[10] K. Kawabata, et. al., N. Sashida, Y. Yamamoto, K. Ogasawara, and Y. Yamasaki, “Parallel Processing Inverter System,” IEEE Trans. on Power Electronics, Vol. 6, No. 3., pp. 442-450, July 1991.
[11] T. Kawabata and S. Higashino, “Parallel Operation of Voltage Source Inverters,” IEEE Trans. on Industry Applications, Vol. 24, No. 2, pp. 281-287, March/April 1988.
[12] A. P. Martins, A. S. Carvalho, and A. S. Araujo, “Design and Implementation of a current Controller,” Proceedings of the IEEE Industrial Electronics, Control and Instrumentation, pp. 584-589, 1995.
[13] C. S. Lee, et. al., “Parallel U.P.S. with an Instantaneous Current Sharing Control,” Proceedings of the IEEE Industrial Electronics, Control and Instrumentation, pp. 568-573, 1998.
[14] T.-S. Lee, S.-J. Chiang, and J.-M. Chang, ”H∞ Loop-Shaping Controller Designs for the Single-Phase UPS Inverters, “ IEEE Trans. on Power Electronics, Vol. 16, No. 4, pp. 473-481, July 2001.
[15] S. B. Bekiarov and A. Emadi, “Uninterruptible Power Supplies: Classification, Operation, Dynamics, and Control,” Proceedings of the IEEE Applied Power Electronics Conf. and Exposition, pp. 597-604, March 2002.
[16] N. M. Abdel-Rahim and J. E. Quaicoe, “Multiple Feedback Loop Control Strategy for Single-Phase Voltage-Source UPS Inverter,” Proceedings of the IEEE Power Electronics Specialists Conf., pp. 958-964, June 1994.
[17] H. Wu, D. Lin, Z. Zhang, K. Yao, and J. Zhang, “A Current-Mode Control Technique with Instantaneous Inductor-Current Feedback for UPS Inverters,” Proceedings of the IEEE Applied Power Electronics Conference and Exposition, pp. 951-957, March 1999.
[18] T.-F. Wu, Y.-K. Chen, and Y.-H. Huang, ”3C Strategy for Inverters in Parallel Operation Achieving an Equal Current Distribution,” IEEE Trans. On Industrial Electronics, Vol. 47, No. 2, pp. 273-281, April 2000.
[19] M. J. Ryan and R. D. Lorenz, “A High Performance Sine Wave Inverter Controller with Capacitor Current Feedback and Back-EMF Decoupling,” Proceedings of the IEEE Power Electronics Specialists Conf., pp. 507-513, 1995.
[20] K. Siri, T.-F. Wu, and C. Q. Lee, ”Current Distribution Control Schemes for Parallel Connected Converter Modules Part I: Master-Slave Control,” IEEE Trans. on Aerosp. Electron. Syst., Vol. 28, pp. 829-840, July 1992.
[21] K. Siri, T.-F. Wu, and C. Q. Lee, ”Current Distribution Control Schemes for Parallel Connected Converter Modules Part II: Central-Limit Control,” IEEE Trans. on Aerosp. Electron. Syst., Vol. 28, pp. 841-851, July 1992.
[22] Y.-K. Chen, Y.-E. Wu, T.-F. Wu, and C.-P. Ku, ”CWDC Strategy for Paralleled Multi-Inverter Systems Achieving a Weighted Output Current Distribution,” Proceedings of the IEEE Applied Power Electronics Conf. and Exposition, pp. 1018-1023, March 2002.
[23] H. D. Venable, ”The K factor: A New Mathematical Tool for Stability Analysis and Synthesis,” Proceedings of the Powercon, Vol. 10, 1983.
[24] H. van der Broeck and U. Boeke, ”A Simple Method for Parallel Operation of Inverter,” in Proc. IEEE INTELEC’98 Conf., pp. 143-150, 1998.
[25] J. Tao, H. Lin, J. Zhang, and J. Ying, “A Novel Load Sharing Control Technique for Paralleled Inverters,” in Proc. IEEE PESC’03 Conf., pp. 1432-1437, 2003.
[26] Y. Xing, L. Huang, S. Sun, and Y. Yan, “Novel Control for Redundant Parallel UPSs with Instantaneous Current Sharing,” in Proc. IEEE PCC’02 Conf., Osaka, pp. 959-963, 2002.
[27] S. J. Chiang, C. H. Lin, and C. Y. Yen, “Current limitation Control Technique for Parallel Operation of UPS Inverters,” in Proc. IEEE PESC’04, pp. 1922-1926, 2004.

[28] E. A. A. Coelho, P. Cabaleiro, and P. F. Donoso, “Small-Signal Stability for Parallel-Connected Inverters in Stand-Alone AC Supply Systems,” IEEE Trans. Ind. Applicat., Vol. 38, No 2, pp. 533-542, March/April 2002.
[29] A. Tuladhar, H. Jin, T. Unger, and K. Mauch, “Control of Parallel Inverters in Distributed AC Power Systems with Consideration of Line Impedance,” IEEE Trans. Ind. Applicat., vol. 36, no. 1, pp. 131-138, Jan./Feb. 2000.
[30]J. M. Guerrero, et. al., ”A Wireless Load Sharing Controller to Improve Dynamic Performance of Parallel-Connected UPS Inverters,” in Proc. IEEE PESC’03, pp. 1408-1413, 2003.
[31] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, ”A Classification and Evaluation of Paralleling Methods for Power Supply Modules,” in Proc. IEEE PESC’99, pp. 901-908, 1999.
[32] George Chrysis, ”High-Frequency Switching Power Supplies: Theory and Design,” New York: McGRAW-Hill, 1984.
[33] D. W. Hart, “Introduction to Power Electronics,” New Jersey: Prentice-Hall Inc. 1997.
[34] N. M. Abdel-Rahim and J. E. Quaicoe, ”Analysis and Design of a Multiple Feedback Loop Control Strategy for Single-Phase Voltage-Source UPS Inverters,” IEEE Trans. on Power Electronics, Vol. 11, No. 4, pp. 532-541, July 1996.
[35] Y. D. Liu, Y. Xing, L. P. Huang, and K. Hirachi, ”A Novel Distributed Control Scheme for the Parallel Operation of Digital Controlled UPS,” in Proc. IEEE IECON’03, pp. 668-672, 2003.
[36] J. M. Guerrero, et. al., ”A High-Performance DSP-Controller for Parallel Operation of Online UPS Systems,” in Proc. IEEE APEC’04, pp. 463-469, 2004.
[37] W. Qiu and Z. Liang, “Practical Design Considerations of current Sharing Control for Parallel VRM Applications,” in Proc. IEEE APEC’05, pp. 281-286, 2005.
[38] Y. Pei, G. Jiang, X. Yang, and Z. Wang,”Auto-Master-Slave Control Technique of Parallel Inverters in Distributed AC Power Systems and UPS,” in Proc. IEEE PESC’04, pp. 2050-2053, 2004.
[39] W. C. Lee, et al.,” A Mater and Slave Control Strategy for Parallel Operation of Three-Phase UPS Systems with Different Ratings,” in Proc. IEEE APEC’04, pp. 456-462, 2004.
[40] X. Sun, Y. S. Lee, and D. Xu, ”Modeling, Analysis and Implementation of Parallel Multi-Inverter Systems with Instantaneous Average-Current-Sharing Scheme,” IEEE Trans. on Power Electronics, Vol. 18, No. 3, pp. 844-856, May 2003.
[41] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 2nd ed. New York: Wiley, 1995.
[42] S. B. Dewan and P. D. Ziogas, “Optimum filter Design for a Sigle-Phase Solid-State UPS System,” IEEE Trans. Ind. Appl., Vol. 15, No. 6, Nov./Dec., pp. 664-669, 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔