(3.239.33.139) 您好!臺灣時間:2021/03/03 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳世寬
研究生(外文):Shin Kuan Chen
論文名稱:電壓源型可調速馬達驅動器產生之諧波及間諧波電流特性研究
論文名稱(外文):Characterizing Harmonic and Interharmonic Currents Generated by the VSI-Fed Adjustable Speed Drives
指導教授:張文恭
指導教授(外文):G. W. Chang
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:97
中文關鍵詞:電壓源變流器可調速驅動器諧波間諧波雙傅利葉級數調變理論
外文關鍵詞:Voltage source inverteradjustable speed driveharmonicsinterharmonicsdouble Fourier series
相關次數:
  • 被引用被引用:3
  • 點閱點閱:387
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
現今交流/直流/交流轉換器架構經常被用在可調整輸出電壓大小及頻率的可調速驅動器(ASD),此種驅動器一般是由前端為交流電壓轉成直流電壓的三相橋式整流器及直流電壓轉成交流電壓的電壓源型變流器(VSI)所組成,而此橋式整流器會在電源端會產生很高的電流諧波。在此論文中提出電壓源型可調速驅動器於系統穩態時注入電源系統中之完整的電流諧波解析法,經由實測與MATLAB/Simulink時域模擬結果作比較,可發現本文中所提出之解析方法,在不失去準確度及計算效率的情形下,此方法仍可有效得到可調速驅動器注入到電源系統中之電流諧波及間諧波的影響。
Applications of solid-state converters for adjustable speed drives (ASDs) are popular in industrial systems. The AC/DC/AC conversion system, frequently used to provide ac voltages with adjustable frequency/magnitude in the ASDs, consists of a voltage source inverter (VSI) fed by a three-phase diode-bridge rectifier, which generates significant amount of line harmonic and interharmonic currents into the supply system and may cause undesired effects on other power system components. This dissertation presents an analytical approach to characterize the current harmonics and interharmonics of the VSI-fed ASD injected into the supply system in steady state, where the circuit models for the rectifier, the dc link, the PWM inverter, and the ac motor are considered in the analysis. The accuracy of the results obtained by the proposed model is demonstrated by comparing with results obtained by using the time-domain simulation tool, Simulink of Matlab. It is shown that the proposed approach is effective to characterize current harmonics and interharmonics generated by the ASD, while the solution accuracy and the computational efficiency are still maintained.
Table of Contents

Acknowledgment I
Chinese Abstract II
Abstract III
Table of Contents IV
List of Figures VII
List of Tables X

Chapter 1 Introduction 1

Chapter 2 Harmonics versus Interharmonics 6
2.1 Harmonics and Interharmonics Theories 6
2.2 Sources and Impacts of Harmonics and Interharmonics 8
2.2.1 Harmonic Sources 8
2.2.2 Interharmonic Sources 10
2.2.3 Impacts of Harmonics and Interharmonics on Power
System Components 12
2.3 IEEE 519-1992 Harmonic Limits 14
2.4 IEC 61000-3-6 Harmonic Limits 16
2.5 IEEE versus IEC Harmonic Standard 19

Chapter 3 Double Fourier Series and Modulation Method 22
3.1 Double Fourier Series 22
3.2 Modulation Method 25
3.3 Spectra of Duration-Modulated Pulses 26
3.3.1 Method of Analysis 26
3.3.2 Pulses with Trailing Edge Modulated 31
3.3.3 Pulses with Leading Edge Modulated 34
3.3.4 Pulses with Both Edges Modulated 35

Chapter 4 Analytical Approach for VSI-Fed ASD Operated under Ideal Supply Conditions 36
4.1 Operating Principles of the PWM VSI-Fed ASD with Simplified Model 37
4.1.1 AC/DC Diode-Bridge Rectifier Converter 37
4.1.2 DC/AC PWM Inverter 38
4.2 Harmonic Analysis of the VSI-Fed ASD under Ideal Supply
Conditions 40
4.2.1 Modulation Process of the PWM Inverter Represented by Double Fourier Series 40
4.2.2 Proposed Approach for the VSI-fed Adjustable Speed
Drive System 44

Chapter 5 Analytical Approach for VSI-Fed ASD Operated under Non-ideal Supply Conditions 48
5.1 Operating Principles of the PWM VSI-Fed ASD with Detailed Model 49
5.1.1 AC/DC Diode-Bridge Rectifier Converter with Commutation Effect 49
5.1.2 DC/AC PWM Inverter with State Space Modeling of Induction Motor 52
5.2 Proposed Approach for the VSI-fed ASDs Operating Under Non-ideal Supply Conditions 56

Chapter 6 Simulation and Laboratory Test Results 60
6.1 Simulated Circuit of the PWM VSI-Fed ASDs by Using Matlab/Simulink 60
6.2 Laboratory Test System Setup 61
6.3 Simulation and Laboratory Test Results for the VSI-Fed ASDs Operated under Ideal Supply Conditions 64
6.4 Simulation and Laboratory Test Results for the VSI-Fed ASDs Operated under Non-ideal Supply Conditions 71

Chapter 7 Conclusions and Future Work 80

References 82
Appendix A: Proof of the PWM Inverter Switching Functions 90
Vita 94
References

[1] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 2nd ed., John Wiley & Sons, 1995.
[2] Electromagnetic compatibility (EMC) – Part 2-4: Environment – Compatibility levels in industrial plants for low-frequency conducted disturbances, IEC 61000-2-4, Switzerland, June 2002.
[3] M. Sakui, H. Fujita, and M. Shioya, “A method for calculating harmonic currents of a three-phase bridge uncontrolled rectifier with dc filter,” IEEE Trans. on Industrial Electronics, vol. 36, no. 3, pp. 434-440, August 1989.
[4] M. Sakui and H. Fujita, “An analytical method for calculating harmonic currents of a three-phase diode bridge rectifier with dc filter,” IEEE Trans. on Power Electronics, vol. 9, no. 6, pp. 631-637, Nov. 1994.
[5] W. Xu, H. W. Dommel, M. B. Hughes, G. W. Chang, and L. Tan, “Modelling of adjustable speed drives for power system harmonic analysis,” IEEE Trans. on Power Delivery, vol. 14, no. 2, pp. 595-601, April 1999.
[6] G. N. Bathurst, N. R. Watson, and J. Arrillaga, “Calculation of the interharmonics produced by a variable speed drive using the adaptive harmonic domain,” to appear in IEEE Trans. on Power Delivery, Paper No. 2000TR424.
[7] M. Grötzbach and R. Redmann, “Line current harmonics of VSI-Fed adjustable speed drives,” IEEE Trans. on Industry Applications, vol. 36, no. 2, pp. 683-690, March/April 2000.
[8] M. B. Rifai, T. H. Ortmeyer, and W. J. McQuilan, “Evaluation of current interharmonics from AC drives,” IEEE Trans. on Power Delivery, vol. 150, no. 3, pp. 1094-1098, July 2000.
[9] G. Carpinelli, F. Iacovone, A. Russo, P. Varilone, and P. Verde, “Analytical modeling for harmonic analysis of line current of VSI-fed drives,” IEEE Trans. on Power Delivery, vol. 19, no. 3, pp. 766-773, April 2004.
[10]R. Carbone, F. De Rosa, R. Langella, A. Sollazzo, and A. Testa, “Modelling of AC/DC/AC conversion systems with PWM inverter,” in Proc. IEEE PES Summer Meeting, vol. 2, no. 3, pp. 1004-1009, Calabria, Italy, 21-25 July 2002.
[11]R. Carbone, D. Menniti, R. E. Morrison, E. Delaney, and A. Testa, “Harmonic and interharmonic distortion in current source type inverter drives,” IEEE Trans. on Power Delivery, vol. 10, no. 3, pp. 1576-1583, July 1995.
[12]L. Hu and R. Yacamini, “Calculation of harmonics and interharmonics in HVDC schemes with low DC side impedance,” IEE Proc.-Gener. Transm. Distrib., vol. 140, no. 6, pp. 469-476, November 1993.
[13]E. W. Kimbark, Direct Current Transmission, New York, John Wiley, 1971.
[14]D. J. Hume, A. R. Wood, and C. M. Osauskas, “Frequency-domain modelling of interharmonics in HVDC systems,” IEE Proc.-Gener. Transm. Distrib., vol. 150, no. 1, pp. 41-48, January 2003.
[15]L. Hu and L. Ran, “Direct method for calculation of AC side harmonics and interharmonics in an HVDC system,” IEE Proc.-Gener. Transm. Distrib., vol. 147, no. 6, pp. 329-335, November 2000.
[16]L. Hu and R. Yacamini, “Harmonic transfer through converters and HVDC links,” IEEE Trans. on Power Electronics, vol. 7, no. 3, pp. 514-525, July 1992.
[17]L. Hu and R. E. Morrison, “The use of modulation theory to calculate the harmonic distortion in HVDC systems operating on an unbalanced supply,” IEEE Trans. on Power Systems, vol. 12, no. 2, pp. 973-980, May 1997.
[18]M Sakui and H. Fujita, “Calculation of harmonic currents in a three-phase converter with unbalanced power supply conditions,” IEE Proc.-Gener. Transm. Distrib., vol. 139, no. 5, pp. 478-484, Sept. 1992.
[19]P. N. Enjeti and P. D. Ziogas, “Analysis of static power converter under unbalanced power supply conditions,” IEEE Trans. on Industy Applications, vol. 24, no. 4, pp. 5903-597, July/Aug. 1988.
[20]Electromagnetic compatibility (EMC) – Part 2-1: Environment – Description of the environment – Electromagnetic environment for low-frequency conducted disturbances and signaling in public power supply systems, IEC 61000-2-1, 2nd edition, 2000.
[21]Electromagnetic compatibility (EMC) – Part 2-2: Environment – Compatibility levels for low-frequency conducted disturbances and signaling in low-power supply systems, IEC 61000-2-2, 2nd ed., 2000.
[22]D. A. Paice, Power Electronics Converter Harmonics, IEEE Press, 1995.
[23]J. Arrillage, B. C. Smith, N. R. Watson, and A. R. Wood, Power System Harmonic Analysis, John Wiley & Sons, 1997.
[24]R. C. Dugan, M. F. McGranaghan, and H. W. Beaty, Electrical Power Systems Quality, McGraw-Hill, 1996.
[25]R. F. Chu and J. J. Burns, “Impact of cycloconverter harmonics,” IEEE Trans. on Industry Applications, vol. 25, no. 3, pp. 427-435, May/June 1989.
[26]R. Yacamini, “Power system harmonic, part 4 interharmonics,” Power Engineering Journal, vol. 10, no. 4, pp. 185-193, Aug. 1996.
[27]IEEE Interharmonic Task Force, “Interharmonic in power system,” http://grouper.ieee.org/groups/harmonic/iharm/docs/
[28]J. Schlabbach, D. Blume, and T. Stephanblome, Voltage Quality in Electrical Power Systems, IEE Press, 2001.
[29]J. Arrillage, N. R. Watson, and S. Chen, Power System Quality Assessment, John Wiley & Sons, 2000.
[30]Recommended practice for harmonic control in electric power systems, IEEE Standard 519-1992.
[31]Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 15: Flicker meter – Functional and design specifications, IEC Standard 61000-4-15, 2003.
[32]Assessment of emission limits for distorting loads in MV and HV power systems, IEC 1000-3-6, 1st ed., 1996.
[33]E. W. Gunther, “Interharmonic – recommended updates to IEEE 519,” in Proc. IEEE PES Summer Meeting, vol. 2, pp. 950-954, Chicago, U.S.A., 21-25 July 2002.
[34]D. Gallo, R. Langella, and A. Testa, “Interharmonic measurements in IEC standard framework,” in Proc. IEEE PES Summer Meeting, vol. 2, pp. 950-954, Chicago, U.S.A., 21-25 July 2002.
[35]S. M. Halpin, R. Bergeron, T. M. Blooming, R. F. Burch, L. E. Conrad, and T. S. Key, “Voltage and lamp flicker issues: Should the IEEE adopt the IEC approach?” IEEE. Trans. on Power Delivery, vol. 18, no. 3, July 2003.
[36]D. Gallo, R. Langella, C. Landi, and A. Testa, “IEC flickermeter response to interharmonic pollution,” in Proc. 11th Int. Conf. on Harmonics and Quality of Power,, pp. 489-494, Lake Placid, U.S.A., Sept. 12-15, 2004.
[37]H. S. Black, Modulation Theory, Van Nostrand, 1953.
[38]D. E. Rice, “A detailed analysis of six-pulse converter harmonic currents,” IEEE Trans. on Industry Applications, vol. 30, no. 2, pp. 294-304, March/April 1994.
[39]F. De Rosa, R. Langella, A. Sollazzo, and A. Testa, “On the interharmonic components generated by adjustable speed drives,” in Proc. 10th Int. Conf. on Harmonics and Quality of Power, vol. 1, pp. 183-188, Rio de Janeiro, Brazil, 6-9 Oct. 2002.
[40]F. De Rosa, R. Langella, and A. Testa, “Evaluation of harmonics and interharmonics produced by AC/DC/AC conversion systems,” in Proc. 11th Int. Conf. on Harmonics and Quality of Power, Lake Placid, U.S.A., Sept. 12-15, 2004.
[41]D. Castaldo, F. De Rosa, R. Langella, A. Sollazzo, and A. Testa, “Waveform distortion caused by high power adjustable speed drives. Part II: Probabilistic analysis,” European Trans. on Electrical Power, vol. 13, no. 6, November/December 2003.
[42]R. Carbone, F. De Rosa, R. Langella, and A. Testa, “A new approach to model AC/DC/AC conversion systems,” in Proc. IEEE PES Summer Meeting, vol. 1, pp. 271-276, Vancouver, Canada, 15–19 July 2001.
[43]R. Carbone, D. Castaldo, F. De Rosa, R. Langella, and A. Testa, “Monte carlo simulation of AC/DC/AC power converter distortion”, in Proc. IEEE Porto Power Tech., vol. 2, Porto, Portugal, 10-13 September 2001.
[44]A. Mansoor, W. M. Grady, A. H. Chowdhury, and M. J. Samotyi, “An investigation of harmonics attenuation and diversity among distributed single-phase power electronics loads,” IEEE Trans. on Power Delivery, vol. 10, no. 1, Jan. 1995.
[45]L. Hu and R. Morrison, “Ac side equivalent circuit-based method for harmonic analysis of a converter system,” IEE Proc. Electronic Power Applicat., vol. 146, no. 1, pp. 103-110, January 1999.
[46]Adjustable Speed Drives Applications Guide, Electric Power Research Institute (EPRI) Research Projects, Technical Report, December 1992.
[47]J. Hamman and F. S. Van Der Merwe, “Voltage harmonics generated by voltage-fed inverters using PWM natural sampling,” IEEE Trans. on Power Electronics, vol. 3, no. 3, pp. 297-302, July 1988.
[48]G. W. Chang, H. W. Lin, and S. K. Chen, “Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters,” IEEE Trans. on Power Delivery, vol. 19, no. 2, pp. 766-773, April 2004.
[49]G. W. Chang and S. K. Chen, “An analytical approach for characterizing harmonic and interharmonic currents generated by VSI-fed adjustable speed drives,” to appear in IEEE Trans. on Power Delivery.
[50]A. K. Chattopadhyay and N. Meher, “A generalized approach to steady-state analysis of a current-source inverter with induction motor load including commutation overlap,” IEEE Trans. on Industrial Electronics, vol. 35, no. 3, pp. 434-441, Aug. 1988.
[51]M. de Montigny, E. Ngandui, P. Sicard, and A. Skorek, “Application and iterative methods for the evaluation of harmonic currents produced by multiple static converters,” in Proc. Canadian Conf. on Electrical and Computer Engineering, vol. 2, pp. 819-824, Toronto, 13-16 May 2001.
[52]E. Ngandui, G. Olivier, G.-E April, and A. O. Ba, “Comprehensive switching functions approach to calculate harmonics produced by multipulse thyristor converters operating under unbalanced supply,” in Proc. 8th Int. Conf. on Harmonics and Quality of Power, vol. 2, pp. 837-843, Athens Greece, 14-16 Oct. 1998.
[53]B. K. Bose, Power Electronics and AC Drives, Prentice Hall, 1986.
[54]P. C. Krause and C. H. Thomas, “Simulation of symmetrical induction machinery,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-84, pp. 1038-1053, November 1965.
[55]P. C. Krause, Analysis of Electric Machinery, McGraw-Hill Book Company, 1986.
[56]C. M. Ong, Dynamic Simulation of Electric Machinery Using Matlab/Simulink, Prentice-Hall, 1998.
[57]R. Carbone, “Analyzing voltage background distortion effects on PWM adjustable-speed drives,” IEEE Trans. on Power Electronics, vol. 19, no. 3, pp. 765-774, May 2004.
[58]P. W. Lehn, “Direct harmonic analysis of the voltage source converter,” IEEE Trans. on Power Delivery, vol. 18, no. 3, pp. 1034-1042, July 2003.
[59]P. W. Lehn, “Exact modeling of the voltage source converter,” IEEE Trans. on Power Delivery, vol. 17, pp. 217-222, July 2003.
[60]D. Gallo, C. N. Landi, R. Langella, and A. Testa, “The impact of electric disturbances on the performance of induction motors fed by multistage converters: theoretical analysis and experimental verification,” in Proc. 21st IEEE Instrumentation and Measurement Technology Conf., Como, Italy, vol. 3, pp. 1638-1643, 18-20 May 2004.
[61]The Math Works, MATLAB User Guide, The Math Works, 1999
[62]The Math Works, SIMULINK User Guide, The Math Works, 1999.
[63]LabView User Manual, National Instruments Corporation, April 2003.
[64]Y. Jiang and A. Ekstrom, “General analysis of harmonic transfer through converters,” IEEE Trans. on Power Electronics, vol. 12, no. 2, pp. 287-293, March 1997.
[65]F. De Rosa, R. Langella, A. Sollazzo, and A. Testa, “On the interharmonic components generated by adjustable speed drives,” in Proc. 10th Harmonics and Quality of Power, vol. 1, no. 2, pp. 183-188, 6-9 Oct. 2002.
[66]T. Tayjasanant and W. Xu, “A case study of flicker/interharmonic problems caused by a variable frequency drive,” in Proc. 11th Int. Conf. on Harmonics and Quality of Power, pp. 72-76, Lake Placid, U.S.A., 12-15 Sept. 2004.
[67]P. Caramia, G. Carpinelli, F. Pezza, and P. Verde, “Power quality degradation effects on PWM voltage source inverter with diode bridge rectifier,” in Proc. 9th Harmonics and Quality of Power, vol. 2, no. 3, pp. 570-576, Orlando, Italy, 1-4 Oct. 2000.
[68]K. Lee, G. Venkataramanan, and T. M. Jahns, “Source current harmonic analysis of adjustable speed drives under input voltage unbalance and sag conditions,” in Proc. 11th Int. Conf. on Harmonics and Quality of Power, pp. 579-587, Lake Placid, U.S.A.,12-15 Sept. 2004.
[69]IEEE Probabilistic Aspect Task Force, "Time varying harmonics: Part I– Characterizing measured data,” IEEE Trans. on Power Delivery, vol. 13, pp. 938-944, July 1998.
[70]IEEE Probabilistic Aspect Task Force, "Time varying harmonics: Part II– Harmonic summation and propagation," IEEE Trans. on Power Delivery, vol. 17, no. 1, pp. 279-285, Jan. 2002.
[71]W. Xu, “Applying harmonic standards to time-varying harmonics,” in Proc. IEEE PES General Meeting, San Francisco, 12-16 June 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. ‧ 胡永芬,〈第一屆成都雙年展「樣板.架上」特別報導〉共三篇,《藝術家》,2002.2,期321,頁208-227
2. ‧ 高千惠,〈血之花瓣的魔幻視境---南非當代藝術家威廉.肯垂居的藝域〉,《藝術家》,2002.3,期322,頁372-377
3. ‧ 許綺玲,〈阿胡耶的攝影三條件說〉,《藝術家》,2001.2,期39,頁104
4. ‧ 陳瑞文,〈關於「邊緣的模擬狀態」策展的幾個視野〉,《典藏今藝術》,2002,期115,頁70-73
5. ‧ 陳瑞文,〈裂斷與憧憬---一個全新藝術狀態的來臨〉,《典藏今藝術》,2002,期118,頁83-87
6. ‧ 游本寬,〈「鏡像」透視的世界〉,《藝術家》,2001.10,期317,頁126
7. ‧ 黃海鳴,〈重拾再現世界的古老方式---寫實繪畫,1.心象寫實繪畫的再認定〉,《藝術家》,2002,期11,頁132
8. ‧ 楊墀,〈平面圖式之必要:「悍圖社」2002聯展「藝術游牧與社會情愫」〉,《大趨勢》,2002.4,期4,頁73-78
9. ‧ 楊墀,〈「前衛」的大門---從文化生產的領域看臺灣美術的結構變遷〉,《藝術家》,2002.4,期323,頁416-429
10. ‧ 葉謹睿,〈繪畫之死與現代藝術的未來---從新媒體風潮看傳統媒材之重生與蛻變〉,《藝術家》,2001.10,期317,頁320-323
11. ‧ 廖新田,〈觀看的困惑:前衛.論述.解論述〉,《藝術家》,2002.3,期322,頁474-477
12. ‧ 謝東山,〈新學院主義的興起---古典油畫風在臺灣〉,《藝術家》,2001.9,期316,頁243-248
13. ‧ 謝東山等,〈臺灣古典風油畫源起與類型〉系列共六篇,《藝術觀點》,2002.1,期13,頁49-79
 
系統版面圖檔 系統版面圖檔