跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:官正邦
研究生(外文):Jeng-Bung Gung
論文名稱:運用有限元素法分析鋼胚熱軋之Sizing Press側壓裁寬製程
論文名稱(外文):Study on the Sizing Press Process applied in the Hot Rolling of Steel Slab Using Finite Element Analysis
指導教授:敖仲寧敖仲寧引用關係
指導教授(外文):093CCU00489035
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:106
中文關鍵詞:Sizing Press側壓裁寬製程有限元素法Gleeble動態冶金模擬試驗機流變曲線挫曲鋼胚邊緣缺陷
外文關鍵詞:sizing pressfinite element methodGleebleflow curvebucklingedge defects
相關次數:
  • 被引用被引用:7
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
Sizing Press側壓裁寬製程是以鍛錘鍛壓鋼胚來取代傳統的立軋輥裁寬,改變了以往鋼胚在裁寬時的相對連續變形狀態,使鋼胚在裁寬時的變形變為週期性的進行,雖然這會造成胚邊變形的不連續性,但因其不會受到咬入角的限制而影響裁減量,所以可提高每一道次的裁減量,有效的提高裁寬效率,減少軋製道次。而將有限元素法應用於軋製過程的理論研究及製程分析上不但可以節省實驗費用,而且因其高速性和可靠性可以對軋製過程中不易進行實驗研究的問題進行深入的探討,並進行相當準確的預測。本研究主要就是利用熱軋現場實際的製程參數搭配Gleeble動態冶金模擬試驗機所得出之材料流變曲線,運用ABAQUS建立並修正Sizing Press側壓裁寬熱加工模型來探討Sizing Press側壓裁寬後之外觀輪廓,觀察鋼胚前端的挫曲現象,並探討應力應變之分布,依據最大剪應力準則來探討使用Sizing Press 裁寬製程是否能有效減少邊緣缺陷的產生,進一步可找出最佳製程條件參數,增加生產效率,以消除軋製缺陷為最終目標。
Sizing press is a slab reduction process, which is using die reduction to replace traditional horizontal rolling reduction. It changes the relative continuous deformation of slab during reduction, to let deformation of slab during reduction become periodic deformation. Although this will result in discontinuity of deformation on slab edge, however, angle of bite will not be an issue to reduction. Therefore, we can raise reduction of each step, increase reduction efficiency and hence reduce steps.

Using finite element method in theoretical research of reduction process can not only save experimental cost but also study the critical issue which is not reachable during real process due to its reliability and high speed. In this study, we mainly use realistic parameters of CSC to obtain flow curve of materials by Gleeble 1500. Then we use ABAQUS to built models of sizing press process and discuss contours after reduction. Also, we examine the buckling in the front end of slab and discuss the distribution of stress/strain.

According to maximum shear criterion, we discuss whether sizing press process can efficiently reduce edge defects and further find the optimum parameters for the process, and hence increase yield rate.
摘要 I
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-2-1 有限元素法應用於金屬成形之相關研究 4
1-2-2 軋延製程之相關研究 7
1-2-3 Sizing Press側壓裁寬製程相關研究 8
1-2-4 軋延缺陷及塑性挫曲之相關研究 11
1-3 研究動機與目的 16
第二章 塑性加工理論與Sizing Press側壓裁寬製程介紹 18
2-1 塑性加工理論 18
2-1-1 塑性力學基礎 19
2-1-2 塑性變形之應力-應變之關係 22
2-1-3 材料降伏準則之比較 24
2-2 Sizing Press側壓裁寬製程介紹 25
2-2-1 Sizing Press側壓裁寬流程 25
2-2-2 Sizing Press側壓裁寬機之幾何關係 27
2-2-3 軋延量的計算 28
2-3 金屬成形有限元素基本理論 28
2-3-1 顯式積分法 30
2-3-2 隱式積分法 31
第三章 研究方法與實驗步驟 33
3-1 研究步驟 33
3-2 研究流程圖 35
3-3 實驗設備 36
3-3-1 Gleeble 1500動態模擬試驗機 36
3-3-2 Gleeble鍛粗試片 38
3-4 實驗方法 40
3-5 實驗規劃 41
第四章 數值模擬軟體及分析方法 42
4-1 數值模擬軟體 42
4-2 數值模擬的方法與假設 42
4-2-1 Sizing Press裁寬側壓機之數值模擬 43
第五章 結果與討論 51
5-1 Gleeble鍛粗試驗 51
5-1-1 Gleeble鍛粗試驗之外觀結果 51
5-1-2 SAE1016低碳鋼之高溫流變曲線 54
5-2 考慮塑性挫曲之Sizing Press裁寬壓力機模型 57
5-2-1 不同寬度不同裁減量裁減後鋼胚外型輪廓的探討 57
5-3 加入壓制輥之Sizing Press裁寬壓力機模型 64
5-3-1 壓制輥之基本介紹 64
5-3-2 依力量歷程來控制上壓制輥 65
5-4 加入壓制輥後不同咬入深度對鋼胚裁寬後之影響 68
5-4-1 不同咬入深度對鋼胚裁寬後外型輪廓之影響 68
5-4-2 不同咬入深度對鋼胚裁寬後應力應變分佈之影響 75
5-5 加入壓制輥後不同裁減量對鋼胚裁寬後之影響 80
5-5-1 不同裁減量對鋼胚裁寬後外型輪廓之影響 80
5-5-2 不同裁減量對鋼胚裁寬後應力應變分佈之影響 85
5-6 經Sizing Press裁寬以及一次平軋後鋼胚變形行為之探討 89
5-6-1 經Sizing Press裁寬及平軋後鋼胚外型輪廓之變化 89
5-6-2 經Sizing Press裁寬及平軋後鋼胚應力應變之分佈 94
第六章 結論與未來研究方向 98
6-1 結論 98
6-2 未來研究方向 101
參考文獻 102
作者簡介 107
[1]H. Nikaido , H. Abe , K. Fujiwara and M. Nihei : Development of slab sizing press for heavy width reduction in hot strip mills, Iron and Steel Engineer, 1990.
[2] H. Nikaido, T. Fujitsu, Y. Yoshimura, T. Hashimoto, M. Nihei, Hitachi’s Highly Reliable Slab Sizing Press, Hitachi’s Review, Vol.39, No.4, 1990.
[3] 吳博山, 周釋善, 鋼鐵材料手冊修訂版, 中國材料科學學會, 1998.
[4] O.C. Zienkiewicz, , E. Onate and J.C. Heinrich, Plastic flow in metal forming I: couple thermal behavior in extrusion, Application of Numerical Methods to Forming Processes, ASME, AMD, Vol. 28, pp. 107-120, 1978.
[5] I. Pillinger, P. Hartley, Sturgess, C.E,N. and Rowe, G.W., Finite-Element Odelling of Metal Flow in Three-Dimensional Forming, Int. J. for Num. Method In Eng., Vol25, pp87-97, 1988.
[6] 林宗翰, Ti-6Al-4V合金熱軋變形行為及顯微組織研究, 國立中正大學機械工程研究所碩士論文, 1998.
[7] S.D. Norris, I. Wilson, Application of 3D numerical modeling for thermal profile optimization on the Gleeble thermomechanical simulator, Modelling and Simulation in Materials Science and Engineering, Vo7, no.3, pp297-309, 1999.
[8] 林哲偉, Ti-6Al-4V合金鍛粗製程模擬及顯微組織研究, 國立中正大學機械工程研究所碩士論文, 2000.
[9] T. Iguchi, I. Yarita, 3-Dimensional Analysis of Flat Rolling by Rigid-plastic FEM Considering Sticking and Slipping Frictional Boundary, ISIJ International, Vol. 31, No. 6, pp.36-46, 1991.
[10] 謝水生, 王祖唐, 金屬塑性成形工步的有限元數值模擬, 冶金工業出版社, 北京, 1997.
[11] S. H. Hsiang, S. L. Lin, Study of 3-D FEM Combined with the Slab Method for Shape Rolling, Journal of Material Processing Technology, Vol. 100 pp.74-79, 1998.
[12] C. Abbjit and M. Subrate, A Finite Element Analysis of Metal-Forming Problems with an Elastic-Viscoplastic Material Model, Int. J. for Num. Method in Eng., Vol20, pp1613-1628, 1984.
[13] J.J. Park and S. I. Oh., Application of Three Dimensional Finite Element Analysis to Shape Rolling Processes, Journal of Engineering for Industry, Transactions of ASME, Vol. 112, n. 1, pp.36-46, 1990.
[14] K. Mori, K. Osakada, Simulation of Three –Dimensional Deformation in Rolling by The Finite Element Method, Int. J. Mech. Sci., Vol. 26, No. 9/10, pp.515-525, 1984.
[15] S. U. Xiong, X. H. Liu, G. D. Wang, Q. Zhang, Simulation of Vertical-Horizontal Rolling Process during Width Reduction by Full Three-Dimensional Rigid-Plastic Finite Element Method, Journal of Material Engineering and Performance, Vol. 6, pp.757-765, 1997.
[16] 熊尚武, 劉相準, 王國樑, 張強, 熱帶粗軋機組立軋穩定軋制的變形規律, 東北大學學報, Vol 18, No 1, pp.72-76, 1997.
[17] S. U. Xiong, J.M.C. Rodrihues, P.A.F. Martins, Three-dimensional simulation of flat rolling through a combined finite element-boundary element approach, Finite Elements in Analysisand Design, Vol. 32, pp.221-233, 1999.
[18] 徐建忠, 熊尚武, 劉相準, 王國樑, 白光潤, 異型鋼胚軋制過程的剛塑性有限元分析, 東北大學學報, Vol 18, No 2, pp.199-202, 2000.
[19] Z. C. Lin and C. C. Shen, Three Dimensional Rolling Process Analysis with a Coupled Finite Element Model, Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 3, pp.309-321, 1996.
[20] S. U. Xiong, X. H. Liu, G. D. Wang, P.A.F. Martins, J. Sihai, Y. Jianguang, Three-Dimensional Thermo-Mechanical Finite Element Simulation of the Vertical-Horizontal Rolling Process, Journal of Material Engineering and Performance, Vol. 6, pp.757-765, 1997.
[21] S. U. Xiong, X. H. Liu, G. D. Wang, Q. Zhang, A Three-Dimensional Finite Element Simulation of the Vertical-Horizontal Rolling Process in the Width Reduction of Slab, Journal of Material Processing Technology, Vol. 101, pp.146-151, 2000.
[22] W. H. Zhou, X. L. Zang, F. S. Du, D. Z. Li, 3-D Thermo-Mechanical Coupled FE Simulation of Temperature Distribution during Hot Rolling of Strip, Journal of Iron And Steel Research, 2001.
[23] T. Hira, K. Isobe, H. Abe, H. Nikaido, T. Fujitsu, S. Zuyama, Deformation of Slab under Heavy Reduction of Width by sizing Press, KAWASAKI STEEL TECHNICAL No. 22, May 1990.
[24] W. K. Chung, S. K. Choi, P. F. Thomson, Three Dimensional Simulation of the Edge Rolling Process by the Explicit Finite Element Method, Journal of Material Processing Technology, Vol. 38 pp.85-102, 1993.
[25] H. Grafe, W. Rohde, D. Rosenthal, Flexible hot strip production by use of a slab sizing press, Technical Report Rolling Mills.
[26] H. A. Muller, W. Rohde, Bevaviour of slabs under deformation in a sizing press with large width reduction, Technical Report Rolling Mills.
[27] M. Uemura, T. Komoda, H. Hatoko, N. Tazoe, K.I. Ide, H. Kobayashi, Development of Slab Width Sizing Press-Outline of Slab Sizing Press Equipment Operating Conditions, IHI Engineering Review, Vol. 24, No.3, 1991.
[28] 林智賢, 吳榮輝, The Slab Sizing Press in NO. 1 Hot Strip Mill, 技術與訓練, 30卷 1期, pp. 99-106, 2005.
[29] H. Yamaguchi, Y. Kusaba and T. Yamada, Improvement of Seam-Defects on Strip Edge of Stainless Steel, Sumitomo Metal Imdustries, Ltd. 1995.
[30] S. E. Clift, P. Hartley, C. E. N. Sturgess and G. W. Rowe, Fracture Prediction in Plastic Deformation Processes, Int. J. Mech. Scl., Vol. 32, No. 1, pp.1-17, 1990.
[31] H. Takuda, K. Mori, H. Fujimoto, N. Hatta, Fracture Prediction in Stretch Forming using Finite Element Simulation Combined with Ductile Fracture Criterion, Archive of Applied Mechanics, Vol. 67, pp.143-150, 1997.
[32] 苗潤濤, 1580mm熱軋機板胚大側壓新技術, 寶鋼技術, Vol.2, 1998.
[33] S. Moir, J. Preston, Journal of Materials Processing Technology, Vol. 125-126, pp.720-724, 2002.
[34] Internal report, PJ90008, China Steel Corporation, Kaohsiung, Taiwan, 2002.
[35] 紀武興, SUS304不銹鋼熱軋製程鋼緣缺陷之模擬與分析, 國立中正大學機械工程研究所碩士論文, 2002.
[36] 高裕倫, 應用三維有限元素法於鋼緣熱軋缺陷生成之分析, 國立中正大學機械工程研究所碩士論文, 2003.
[37] 徐星杓, 鋼胚熱軋製成中的裁寬側壓過程分析, 國立中正大學機械工程研究所碩士論文, 2004.
[38] J. M. Gere, and S. P. Timoshenko, Mechanics of Materials, PWS Publishing Company, 1997.
[39] A. M. Marc and K. C. Krishan, Mechanical Behavior of Material, Prentice-Hall, fourth edition, 1999.
[40] G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Series in Material Science and Engineering, 1988.
[41] Vladimir B. Ginzburg, Steel-Rolling Technology, New York and Basel, 1989.
[42] 林煥章, 寬廣溫度與應變率範圍下之Ti-6Al-4V鍛造特性之研究, 國立成功大學機械工程研究所博士論文, 1997.
[43] J.O. Hallquist, LS-DYNA3D THE ORETICAL MAUNAL, SLTC REPORT 1018, Revision 3, 1994.
[44] ABAQUS/Explicit User’s Manual, Version 6.4
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊