跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李家豪
研究生(外文):Gia-Hou Lee
論文名稱:脈衝磁場中磁性奈米微粒與蛋白質結合體的細胞轉導及其應用
論文名稱(外文):Cellular uptake of magnetic nanoparticle-protein conjugates in pulsed magnetic field and its application
指導教授:李文乾
指導教授(外文):Wen - Chien Lee
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:84
中文關鍵詞:奈米
外文關鍵詞:nanoparticle
相關次數:
  • 被引用被引用:2
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
奈米藥物載體療法是近年來所發展出最具前瞻性的醫療技術,此方法是將奈米顆粒當成載體,將藥物或弁鄔妘J白質標的送入腫瘤細胞內,達到殺死腫瘤細胞的效果,此方法在癌症治療上預期未來將有很大突破。磁性奈米微粒具磁性所以導引是共同沉澱法合成磁性奈米微粒(Fe3O4),所得磁性奈米與1-ethyl-3-(3-dimethylaminopropyl) carbodiimide、以及結合螢光團fluorescein isothiocyanate的牛血清蛋白(簡稱FITC-BSA) 以莫耳比4:1:1的比例混合反應,使磁性奈米上以共價鍵結接上FITC-BSA,之後用磁座將磁性奈米收集,去除未反應物質再回溶於去離子水中,即得帶有螢光團的磁性奈米微粒與蛋白質結合體(conjugate)。利用螢光顯微鏡以480 nm雷射激發,觀察到此磁性奈米與蛋白質結合體確實有螢光,證實磁性奈米確有接上FITC-BSA。在瞬間高磁場下,結合FITC-BSA之磁性奈米可被送入上皮癌細胞株(HeLa cell)中,達到蛋白質轉導(transduction)至活體細胞的目的。利用流氏細胞儀及雷射共焦式顯微鏡,可觀察計算其細胞接受磁性奈米與蛋白質結合體的比率(轉導效率)。


在連續暴露三次的情況,目前測得效率最佳時的磁場強度為0.36 Tesla。流式細胞儀中的螢光分析結果顯示,細胞的轉導效率最高可達89%,此結果顯示磁性奈米顆粒可有效地作為蛋白質藥物的載體,以物理方式將其帶進活體細胞。
Recently , the nanoparticles carriers method has been a popular technique .This method is to use nanoparticles as carriers deliving the medicines or functional proteins to target tumor cells . We found that fast introduction of a protein in the conjugation form with superparamagnetic iron oxide nanoparticle into tumor cells was possible by applying a strong magnetic field in pluses. Firstly, superparamagnetic nanoparticle were prepared from an alkaline solution of divalent and trivalent iron ions and covalently bound with protein through the activation of N-ethyl-N’(3-dimethylaminopropyl) carbodiimide. Bovine serum albumin (BSA) were taken as the model proteins for the formatin of protein-nanoparticle conjugates. The protein-nanoparticle conjugates were the coupled with a fluorescent dye FITC . The labled protein-nanoparticle conjugates were mixed with tumor cell line,HeLa or HepG2/C3A, and exposed in a plused magnetic field once or several times. Preliminary results suggested that superparamagnetic nanoparticle were effective to carry proteins into living cells immediately .Cellular internalization of the fluorescein-labeled protein- nanoparticle conjugates was proved by the observation of cell fluorescene in fluorescent microscopy , as well as cell analysis by flow cytometer. According to the results showed in back data ,about 89% of cells received the protein- nanoparticle conjugate and became fluorescent.
目錄
致謝∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ l
中文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅲ
英文摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅴ
目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Ⅵ
圖目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅸ
第一章 緒 論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1.1研究動機與目的∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1.2文獻整理及探討∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1.3研究原理 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
1.3.1奈米材料的特性∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
1.3.2磁滯曲線∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6
1.3,3流式細胞儀原理∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8
第二章 實驗儀器、器材與藥品∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
2.1實驗藥品∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10
2.1.1磁性奈米顆粒製備∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
2.1.2磁性奈米顆粒表面改質∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10
2.1.3細胞繼代及培養 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11
2.2 實驗儀器∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12
2.3實驗器材∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙14
第三章 實驗步驟與分析方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16
3.1磁性顆粒∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16
3.1.1磁性顆粒的製備∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16
3.1.2磁性奈米濃度之量測∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18
3.1.3 磁性奈米鍵結蛋白質步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18
3.1.4螢光試劑(5-IAF)鍵結步驟∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18
3.2細胞培養液配置法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19
3.3PBS配置方法 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20
3.4解凍細胞 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20
3.5附著型細胞之繼袋培養(subculture) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21
3.6瞬間磁場下細胞轉導(cell transduction)∙∙∙∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
3.7雷射共焦式顯微鏡操作步驟 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24
3.8磁性奈米生物相容性測試∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25
第四章 結果與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙26
4.1磁性奈米微粒之粒徑分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙26
4.2磁性奈米微粒上鍵結蛋白質∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28
4.3磁性奈米微粒上蛋白質鍵結上螢光探針 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙28
4.4瞬間高壓磁場下磁性奈米蛋白質微粒轉染∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙32
4.5轉染後以螢光顯微鏡及流氏細胞儀觀察其驅勢∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙33
4.6轉染後以雷射共焦式顯微鏡分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙46
4.7奈米顆粒對細胞之影響 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51
第五章 結果與建議∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙53
參考文獻 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙55
附錄A ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 60
流式細胞儀操作方式∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙70
林榮耀、王惠均、吳啟裕、羅竹芳、 周姽嫄 、余淑美、 游佳融 、李芳仁、 鐵宗良 、鄭貽生等人,後基因體時代之生物技術,第249~263頁, 醫藥基因生物技術教學資源中心, 民國92年
吳劍秋,電磁感應與暫態過程,第370~450頁, 台北,金華科技圖書公司,民國95年
工研院量測中心,奈米科技與検測技術,第221~350頁,台北,金華科技圖書公司,民國93年
按作者英文自母順序:
Andre´ Ziegler, Xiaochun Li Blatter, Anna Seelig, and Joachim Seelig, 2003, ” Protein Transduction Domains of HIV-1 and SIV TAT Interact with Charged Lipid Vesicles. Binding Mechanism and Thermodynamic Analysis”Biochemistry, 42, 9185-9194

A. M. Koch, F. Reynolds, M. F. Kircher, H. P. Merkle, R. Weissleder,and L. Josephson*,2003, “Uptake and Metabolism of a Dual Fluorochrome Tat-nanoparticle in HeLa Cells” Bioconjugate Chem.(14), 1115-1121

Bayer,M Krafe,A Ejchart et al. ,1995,” Stuctural studies of HIV-1 Tat Protein” .Molecule Biology,(247)529-535

Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA. , 2001,” Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells.” Nature Biotechnology. (19):1141-1147.

Brenda K. Eustace1, Takashi Sakurai1,2, Jean K. Stewart1, Dean Yimlamai1, Christine Unger3, Carol Zehetmeier3,Blanca Lain3, Claudia Torella3, Stefan W.Henning3, Gerald Beste3, Bradley T. Scroggins4, Len Neckers4, Leodevico L. Ilag3 and Daniel G. Jay1, 2004 ,“Functional proteomic screens reveal an essential extracellular role for hsp90?in cancer cell invasiveness” Nature Cell Biology,(16)1-8

C. Martya, C. Meylana, H. Schottb, K. Ballmer-Hofera and R. A. Schwendenera, 2004,*”Enhanced heparan sulfate proteoglycan-mediated uptake ofcell-penetrating peptide-modified liposomes” Cellular and Molecular Life Sciences,( 61), 1785–1794

Danen-van Oorschot AA, van Der Eb AJ, Noteborn MH. , 2002,” The Chicken Anemia Virus-Derived Protein Apoptin Requires Activation of Caspases for Induction of Apoptosis in Human Tumor Cells” Virology(74)7072–7078



Elena Izmailova, et al ., 2003,”HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. “Nature medicine , (9)191-197


Haibin Xia,Qinwen Mao et al . ,2001,”The HIV Tat protein transduction domain improves the biodistribution of β-glucuronidase expressed from recombinant viral vectors. “Nature biotech , (19)640-644

Jeffrey C. Mai, Hongmei Shen, Simon C. Watkins, Tao Cheng, and Paul D. Robbins,2002, “Efficiency of Protein Transduction Is Cell Type-dependent and Is Enhanced by Dextran Sulfate*” BIOLOGICAL Chemistry ,(277)30208-30218

JlanxinIAnxin Chen,1 Ben Fabry,1 Ernesto L. Schiffrin,2 and Ning Wang1, 2001,” Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells” Physiol Cell Physiol ,(280)C1475–C1484

J.L.Rohn and M.H.M. Noteborn , 2004),“The viral death effector apoptin reveals tumor-specific processes” apoptosis,(9) 315-322

J.P. Butler and S.M. Kelly , 1998,“A model for cytoplasmic rheology consistent with magnetic twisting cytometry” Biorheology (353 ) 193-209


K. Nishimura,a M. Hasegawa, Y. Ogura, T. Nishi, K. Kataoka, and H.
Handa,2002,” 4°C preparation of ferrite nanoparticles having protein molecules immobilized on their surfaces” Applied Physics ,( 91) 8555-8556

Laboratoire des Milieux De´sordonne´s et He´te´roge`nes, CNRS UMR 7603 and Universite´ Pierre et Marie Curie, Tour 13, Case 86, 4 place Jussieu, 75252 Paris, France,and Fe´de´ration de Recherche MSC, CNRS FR 2438 and Universite´ Paris, 7-Denis Diderot,Paris, France, and Laboratoire des Liquides Ioniques et Interfaces Charge´es,Universite´ Pierre et Marie Curie, Baˆtiment F, Case 63, 4 place Jussieu, 75005 Paris, France, 2002,“Interaction of Anionic Superparamagnetic Nanoparticles with Cells: Kinetic Analyses of Membrane Adsorption and Subsequent Internalization” Langmuir ,18, 8148-8155

Maite Lewin,Nadia Carlesso, et al.,2000 ,“Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recocery of progenitor cells.” Nature biotech, ,(2)410-414

Marina Puig-de-Morales,1 MirelaI Grabulosa,1 Jordi Alcarz,1 Joaquim,Muliol,2 Geoffreyn. Maksym,3 Jeffrey J. Fredberg,4 and Daniel Navajas1,2001“Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation” J Appl Physiol(91) 1152–1159

Masayuki Matsushita,1 Kazuhito Tomizawa,1 Akiyoshi Moriwaki,1 Sheng-Tian Li,1 Hiroaki Terada,1,2 andHideki Matsui1 ,2001,“A High-Efficiency Protein Transduction System Demonstrating the Role of PKA in Long-Lasting Long-Term Potentiation” Neuroscience, (15),6000–6007

Olivier Zelphati, Yan Wang, Shinichi Kitada, John C. Reed, Philip L. Felgner,and Jacques Corbeil” Intracellular Delivery of Proteins with a New Lipid-mediated Delivery System,2001,”Biological Cemistry,( 276) 35103–35110

Patrick Wunderbaldinger, Lee Josephson,*, and Ralph Weissleder , 2002, ” Tat Peptide Directs Enhanced Clearance and Hepatic Permeability of Magnetic Nanoparticles ” Bioconjugate Chem., (13), 264-268

Pierre Smirnov,1,2 Florence Gazeau,2 MaLte’ Lewin,1 Jean Claude Bacri, Nathalie Siauve,1 Catherine Vayssettes,1 Charles Andre’ Cue’nod,1 and Olivier Cle’ment1*,2004,” In Vivo Cellular Imaging of Magnetically Labeled Hybridomas in the Spleen With a 1.5-T Clinical MRI System” Magnetic Resonance in Medicine (52)73–79


S. Hatanaka,a N. Matsushita, and M. Abe,2003,” Direct immobilization of fluorescent dyes onto ferrite nanoparticles during their synthesis from aqueous solution”“ Applied Physics ( 93), 7569-7570

Stefan Beck1 Takashi Sakurai2 Brenda K. Eustace2 Gerald Beste1 Robert Schier1 Fritz Rudert1 Daniel G. Jay2,2002,” Fluorophore-assisted light inactivation: A high-throughput tool for direct target validation of proteins” Proteomics, (2), 247–255

Stephen F, Joe S, Yasomin D et al . ,1994, “Tat-mediated delivery of heterologous proteins into cells”. Proc Natl Acad Sci USA, 664-668

Sundararajan Venkatesan,* Jeremy J. Rose,* Robert Lodge,
Philip M. Murphy,and John F. Foley, 2003,”Distinct Mechanisms of Agonist-induced Endocytosis for Human Chemokine Receptors CCR5 and CXCR4”Molecular Biology of the ell ,(14)3305–3324

Ying Liu ,Melina Jones et al. ,2000,“Uptake of HIV-1 Tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands.” Nature edicine ,(6)1380-1387

Yulia Antov, Alexander Barbul, and Rafi Korenstein*,2004,
“Electroendocytosis: stimulation of adsorptive and luid-phase
uptake by pulsed low electric fields” Experimental Cell Research,(297) 348–362

Yong Zhang, Nathan Kohler, Miqin Zhang*,2002,” Surface modi.cation of superparamagnetic magnetite nanoparticles and their intracellular uptake” Biomaterials 23 1553–1561

Zhibao Mi, Jeffrey Mai, Xiaoli Lu, and Paul D. obbins1, 2000,”Characterization of a Class of Cationic Peptides Able to Facilitate Efficient Protein Transduction in Vitro and in Vivo” Molecular Therapy , (24),339-347
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳翠珍(2000)。媒體、社會與教育。社教雙月刊,98,25-27。
2. 吳翠珍(2002a)。教孩子認識媒體─教育新觀念─資訊時代的媒體教育。人本教育札記,157,40- 41。
3. 吳翠珍(2002a)。教孩子認識媒體─教育新觀念─資訊時代的媒體教育。人本教育札記,157,40- 41。
4. 吳翠珍(1998)。兒童收看電視卡通行為研究-兼論媒體素養。教育資料文摘,42(6),48 -75。
5. 吳翠珍(1998)。兒童收看電視卡通行為研究-兼論媒體素養。教育資料文摘,42(6),48 -75。
6. 朱則剛(1991)。系統法則教學發展理念初探。視聽教育雙月刊,32,1-20。
7. 朱則剛(1991)。系統法則教學發展理念初探。視聽教育雙月刊,32,1-20。
8. 王泰俐(2004)。電視新聞節目「感官主義」之初探研究。新聞學研究,81 ,1-41。
9. 王泰俐(2004)。電視新聞節目「感官主義」之初探研究。新聞學研究,81 ,1-41。
10. 吳翠珍(2000)。媒體、社會與教育。社教雙月刊,98,25-27。
11. 吳知賢(1996)。英國的媒體教育。視聽教育雙月刊,37(5),30-37。
12. 吳知賢(1996)。英國的媒體教育。視聽教育雙月刊,37(5),30-37。
13. 吳知賢(1998a)。如何培養聰明的電視兒童-談兒童的媒體教育。班級經營,3(3),18-23。
14. 吳知賢(1998a)。如何培養聰明的電視兒童-談兒童的媒體教育。班級經營,3(3),18-23。
15. 黃明明(1994)。電視新聞暴力內容對兒童之涵化效果初探。新聞學研究,48,63-98。