跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘曉群
研究生(外文):Hsiao-Chun Pan
論文名稱:磁性與非磁性高分子微米顆粒固定單股低聚核苷酸之雜合效率探討
論文名稱(外文):Study on DNA hybridization using single-stranded oligonucleotides immobilized on magnetic and non-magnetic polymer microbeads
指導教授:李文乾
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:92
中文關鍵詞:高分子微米顆粒雜合
外文關鍵詞:polymer microbeadshybridization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固定核苷酸於固相載體,廣泛應用在分子生物學和臨床醫學上,包括親和性層析、胜肽與低聚核苷酸的合成、生物感測器以及基因晶片等。本研究主要是利用分散聚合法,將甲基丙烯酸環氧丙酯和苯乙烯兩種單體共聚合得到大小約2微米的非磁性高分子微米顆粒,利用化學改質方式,將顆粒表面官能基改質成胺基與醛基,分別利用共價鍵結與非共價鍵結方式固定單股低聚核苷酸,再進行雜合試驗。同時考量磁性顆粒在應用上有容易分離回收的優點,因此將磁性物質包埋入上述高分子微粒,形成具有磁性的顆粒,以相同的方法固定單股低聚核苷酸之後,進行雜合效率之比較。
本研究固定單股低聚核苷酸為探針進行雜合,發現雜合時間以20分鐘至1小時為宜。而增加探針濃度則固定在顆粒上的探針鍵結量越高,標的低聚核苷酸的雜合量也越高,經十次反覆雜合試驗,結果顯示多次雜合不會影響其雜合效率,亦不受冷凍處理之影響。同時證實高分子微米顆粒固定探針之雜合具有專一性,因此具有極高之應用價值。綜合各種顆粒固定單股低聚核苷酸之鍵結量與雜合效率,固定方式以「顆粒表面鍵結5’ amino primer2」最優,「顆粒表面鍵結5’ biotin primer2」次之,「顆粒表面鍵結5’p primer2」最差,而顆粒種類磁性又優於非磁性,惟磁性顆粒5’端磷酸固定單股低聚核苷酸的雜合系統,顆粒在改質過程中會流失部分磁性物質,在應用上是一項缺失。
Immobilized oligonucleotides have been widely used in the studies of molecular biology and clinical analysis, including affinity chromatography, peptide and oligonucleotides synthesis, biosensor and DNA-microchip technology. In this study, non-magnetic polymer microbeads having a particle diameter of ca. 2.0 µm were prepared by the dispersion polymerization of glycidyl-methacrylate(GMA) and styrene. For the application in DNA hybridization, the copolymerized beads were chemically modified to introduce aldehyde and amino groups, which were allowed for covalent or non-covalent linking of single-stranded oligouncleotides. At the same time, magnetic polymer microbeads, taking the advantages of easy separation in particle use, were also prepared by entrapping of magnetic material in the polymer microbeads and employed for the immobilization of single-stranded oligonucleotides. The efficiencies of hybridization through the use of magnetic and non-magnetic microbeads were compared.

In the present study, a specific sequence of immobilized single-stranded oligouncleotides was assigned as the probe for the hybridization. The most appropriate time for hybridization was determined to be in the range from 20 minutes to one hour. Moreover, increasing the incubated concentration of probe increased the amount of probe immobilized on the microbeads. As the amount of bound probe increased, the amount of hybridization of the target became greater. According to the results from ten-times repeated hybridizations, the efficiency of hybridization won’t be significantly affected neither by the repetitive runs of hybridization nor the freezing process. In the meanwhile, it was proved that the hybridization of fluorescent target DNA to the immobilized probe on the polymer microbeads was unique, suggesting an extremely high value of application. Analyzing the efficiency of hybridization from different kinds of microbeads coupled with single-stranded oligouncleotides, it was found that the best way to prepare immobilized probe was the binding of 5’ amino-containing oligonucleotide on microbeads. The immobilization of 5’ biotin-labeled oligonucleotide on the microbeads bound with avidin was the second choice. The inferior one was the binding of 5’ phosphate-containing oligonucleotide on microbeads. In all oligonucleotide-immobilized protocols, magnetic microbeads were always better than non-magnetic ones. However, during the surface modification process for the binding of 5’ phosphate-containing oligonucleotide on microbeads, magnetic material could be lost to some extant, which may be a defect in application.
中文摘要……………………………………………………………………I
英文摘要…………………………………………………………………III
目錄…………………………………………………………………………V
圖目錄………………………………………………………………………X
表目錄 ……………………………………………………………………XI
第一章 緒論…………………………………………………………………1
1.1研究動機與目的 ………………………………………………1
1.2文獻回顧 ………………………………………………………3
1.2.1固定DNA ……………………………………………… 3
1.2.2親和性吸附固定DNA ……………………………… 4
1.2.3化學反應共價鍵結DNA ……………………………… 5
1.2.4雜合最適溫度……………………………………………6
1.2.5雜合後之變性方法………………………………………7
1.2.6包埋磁性顆粒的高分子顆粒技術………………………8
1.2.7固定單股低聚核苷酸在雜合上的應用…………………9
第二章實驗藥品與設備 ………………………………………………… 11
2.1實驗藥品 …………………………………………………… 11
2.1.1高分子顆粒製備 ………………………………………11
2.1.2顆粒表面之乙二胺改質 ………………………………12
2.1.3顆粒表面之戊二醛改質 ………………………………12
2.1.4 PS/GMA顆粒上醛基含量的測定 ……………………12
2.1.5固定卵白素與接合5’-biotin primer2 …………………13
2.1.6顆粒表面之二級胺改質 ………………………………13
2.1.7固定5’P primer2 ………………………………………14
2.1.8固定5’amino primer2 …………………………………14
2.1.9雜合…………………………………………………15
2.2實驗設備 ………………………………………………………16
第三章 實驗方法與步驟 …………………………………………………18
3.1非磁性顆粒改質為二級胺 ……………………………………18
3.1.1共聚合高分子顆粒之製備……………………………18
3.1.2非磁性顆粒表面環氧基之胺基改質…………………19
3.1.3利用非磁性顆粒表面胺基固定5’P primer2…………21
3.1.4定量固定在非磁性顆粒上之5’P primer2的量………21
3.1.5製作anti-primer2檢量線 ……………………………23
3.1.6非磁性顆粒改質為胺基之雜合……………………25
3.2非磁性顆粒表面改質為醛基…………………………………26
3.2.1共聚合高分子顆粒之製備……………………………26
3.2.2非磁性顆粒表面之乙二胺改質………………………27
3.2.3具胺基之非磁性顆粒表面進行戊二醛修飾…………27
3.2.4非磁性顆粒表面醛基含量的測定……………………28
3.2.5非磁性顆粒改質為醛基鍵結卵白素固定
5’biotin primer2 ……………………………………… 30
3.2.6非磁性顆粒改質為醛基鍵結卵白素固定探針之雜合33
3.2.7非磁性顆粒表面改質為醛基固定 5’amino primer2… 34
3.2.8非磁性顆粒改質為醛基固定含5’胺基探針之雜合…34
3.3磁性顆粒……………………………………………………36
3.3.1製備磁性顆粒……………………………………… 36
3.3.2磁性顆粒表面官能基之改質……………………… 36
3.3.3磁性顆粒改質後之雜合 ……………………………… 36
第四章實驗結果與討論………………………………………………… 37
4.1甲基丙烯酸環氧丙酯與苯乙烯共聚物顆粒之製備……… 37
4.2雜合時間之探討…………………………………………… 38
4.3相同雜合時間下不同起始標的濃度雜合效率之探討…… 40
4.4非磁性顆粒官能基改質為二級胺固定探針 ……………… 42
4.4.1 非磁性顆粒表面胺基之改質 ……………………… 42
4.4.2 非磁性顆粒以胺基共價固定探針(5’P primer2)
之定量 …………………………………………… 43
4.4.3 非磁性顆粒改質為二級胺鍵結探針之
多次雜合之效率 …………………………………… 43
4.5 非磁性顆粒官能基改質為醛基固定探針 ………………… 46
4.5.1非磁性顆粒表面醛基之改質 ………………………… 46
4.5.2非磁性顆粒表面醛基之定量 ………………………… 46
4.5.3 固定在非磁性顆粒上卵白素之定量 ……………… 47
4.5.4非磁性顆粒改質為醛基固定探針之雜合效率 ……… 48
4.6磁性顆粒表面官能基改質為二級胺固定探針 ……………… 50
4.6.1磁性顆粒表面胺基改質 ……………………………… 50
4.6.2磁性顆粒以胺基共價固定探針(5’P primer2)之定量50
4.6.3磁性顆粒改質為二級胺固定探針之雜合效率 ……… 51
4.7磁性顆粒官能基改質為醛基固定探針 ……………………… 53
4.7.1磁性顆粒表面醛基之定量 …………………………… 53
4.7.2固定在顆粒上卵白素之定量 ………………………… 53
4.7.3磁性顆粒改質為醛基固定探針之雜合效率………… 54
4.8非磁性顆粒鍵結5’P primer2 雜合之專一性探討……………56
4.8.1基因序列完全不同 ……………………………………56
4.8.2基因序列其中連續7個base 與5’P primer2互補…59
4.9四種不同改質顆粒雜合效率之比較………………………… 63
4.10顆粒表面改質為醛基固定5’amino primer2
其鍵結量與雜合效率 ………………………………… 69
4.11六種不同改質顆粒雜合效率之比較 ……………………… 78
第五章 結論與建議 ……………………………………………………… 80
參考文獻…………………………………………………………………… 83
林長宏,”親合性聚苯乙烯顆粒的製備及其在蛋白質層析上的應用”私立中原大學化學工程研究所碩士論文(1994)
林慧蓉,”固定單股低聚核苷酸於無孔高分子微米顆粒及其在DNA雜合與基因重組上的應用”國立中正大學化學工程研究所碩士論文(2002)
李國源,”無孔性高分子微粒固定DNA及其應用”國立中正大學化學工程研究所碩士論文(2001)
吳政誼,”無孔性聚苯乙烯微米顆粒上酵素與蛋白質之固定化”國立中正大學化學工程研究所碩士論文(1996)
廖衛漢,”甲基丙烯醯胺系聚合物於酵素固定化生產寡糖之應用”國立中正大學化學工程研究所碩士論文(1996)
陳志浩,”無孔性甲基丙烯酸甲酯-甲基丙烯酸環丙酯共聚物之製備及其蛋白質層析之應用”國立中正大學化學工程研究所碩士論文(1998)
鍾挺豪, ”磁性無孔高分子微米顆粒的製備及其在生化上的應用”國立中正大學化學工程研究所碩士論文(2004)
Agatha, F., Sirdhar, R., and Sylvia D., ”Interaction of Immobilized Avidin with an Aequorin-Biotin Conjugate:An Aequorin-Linked Assay for Biotin.” Analytical Biochem.”,Analytical Biochem.,254,62-68(1997)
Asha, A. O.,Svend, E. R., Henrik, N. R., Soren, R. R., Barbara, M. S., and Johansson, A., ”detection of Immobilized Amplicons by ELISA-like technique”, Clinical Chemistry,42,1574-1555 (1996)
Bertrand, R. J., ”Large-Scale Expression Measurement by Hybridization Methods:From High-Density Memranes to “DNA Chips”, The Biochemistry Journal,124,251-258(1998)
Brett, A. S., and John, L. T.,”Expression Microarray Hybridization Kinetics Depend on Length of the Immobilized DNA but Are Independent of Immobilization Substarte”, Analytics Biochemistry, 295 , 149-157(2001)
Chrisey, L. A., Lee, G.. U., and O’Ferrall, C. E., ”Covalent attachment of synthetic DNA to self-assembled monolayer films”, Nucleic Acids Research,24,3031-3039(1996)
Christof, M. N., Larissa, B., Bulent, C., and Dietmar, B., ”DNA-Directed Immobilization: Efficient, Reversible, and Site-Selective Surface Binding of Protein by Means of Covalent DNA-Streptavidin Conjugates”, Analytical Biochemistry 268,54-63(1999)
Chun, X. H. C.,Pingang, H., and Yuzhi, F., ”Electrochemical Detection of Sequence-Specific DNA Using a DNA Probes Labeled with Aminferrocene and Chitosan Modidfied Electrode Immobilized with ssDNA,”The Royal Society of Chemitry, 126,62-65(2001)
Cynthia, J. B., Mark, S. S., David, A. H., Jay, W. G., Fred, J. B., and Darrell, P. C., “Rotating Rod Renewabel Microcolumn or Automated, Solid-Phase DNA Hybridization Studies”, Analytic Chemistry, 71, 4135-4141(2000)
Day, P. J. R., Flora, P .S., Fox, J. E., and Walker, M. R., ”Im mobilization of Polynucleotides on Magnetic Particals. Factors Influencing Hybridization Efficiency”, The Biochemistry Journal, 278,735-740(1990)
Fahy, E., Davis, G. R., DiMichele, L. J., and Ghosh, S. S., ”Design and Synthesis of Polyacrylamide-based oligonucleotide supports for use in nucleic acid diagnostics”, Nucleic Acids Research,21,1819-1826(1993)
Fan, Z. H., Mangru, s., Granzow, R., Heaney, P., Ho, W., Dong, Q., and Kumar, R., ”Dynamic DNA Hybridization on a Chip Using Paramagnetic Beads”, Analytical Chemistry,71,4851-4859(1999)
Gilham, P. T. ,”The Synthesis of Celluloses Containing Covalently Bound Nucleotides, Polynucleotides,and Nucleic Acids”, Biochemistry, 7,2809-2813(1968)
Heiko, K., Vadim, V. D., James, M. C., Mark, J. F., Brian, D. G., and Maxim, D. F., ”Hybridization of DNA and PNA Molecular Beacons to Single-Stranded and Double-Stranded DNA Targets”, J. Am. Chem. SOC., 124,1097-1103(2002)
Hienrich, F. A, Margaret, N. K., and Xiao, Q. G., ”Multiplexed DNA Sequencing and Diagnostics by Hybridization with Enrich Stable Isotope Labels”, Analytical Chemistry, 69, 1510-1517(1997)
Imai, T., Sumi, Y., Hatakeyama, M., Fujimoto, K., Kawaguchi, H., Hayashida, N., Shiozaki, K., Terada, K., Yajima, H., and Handa, H., “Selective Isolation of DNA or RNA Using Single-Stranded DNA Affinity Latex Particles”, Journal of Colloid and interface Science, 177, 245-249(1996)
Jane, G. M., Gregory, M. D., Sabrina, E. R., Linda, M, H., and Michael, L., “The Selective Isolation of Novel cDNA Encoded by the Regions Surrounding the Human Interleukin 4 and 5 Genes”, Nucleic Acids Research, 20, 5173-5179(1992)
Janeczko, R. and Albert, S. B.,” Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes”, Nucleic Acids Research, 29, 996-1004(2001)
Joanne, D. A., and Linda, A. C., “Use of immobilized PCR primers to generate covalently immobilized DNAs for in vitro transcription/translation reactions”, Nucleic Acids Research, 28, E5(2000)
Joanthan, N. K., Joseph, L. W., Joseph, P. D., Rachel, E. M., Mary, C., and Eugene, L. B., “Immobilization of DNA via Oligonucleotides containing an Aldehyde or Carboxylic Acid Group at The 5’-Terminus”, Nucleic Acids Research, 7, 2891-2909(1987)
Kalim, U. M., and Edwin, M.S., ”Determining the Influence of Structure on Hybridization using Oligonucleotides Arrays”, Nature Biotechnology, 17, 788-792(1999)
Kazunobu, F., and Jonathan, S., “Surprising Lability of Biotin-Streptavidin Bond During Transcription of Biotinylated DNA Bound to Paramagnetic Streptavidin Beads”, Biotechniques, 14, 608-617(1993)
Khudyakov, Y. E., Gaur, L., Singh, J., Patel, P., and Fields, H. A., ”Primer Specific Solid-Phase Detection of PCR Products”, Nucleic Acids Research, 22, 1320-1321(1994)
Linda, A. C., Gil, U. L., and Elizabeth, C. E., “Covalent Attachment of Synthetic DNA to Self-Assembled Monolayer Films”, Nucleic Acids Research,24, 3031-3039(1996)
Lund, V., Schmid, R., Rickwood, D., and Hornes, E., “Assessment of Methods for Covalent Binding of Nucleic Acids to Magnetics Beads, DynabeadsTM , and Characteristics of the Bound Nucleic Acids in Hybridization Reaction”, Nucleic Acids Research, 16, 10861-10880(1998)
Magnus, J., Simon, F., Anthony, J. B., and Ulf, L., ”Effect of Oligonucleotides Truncation on Single-Nucleotides Distinction by Solid-Phase Hybridization”, Analytical Chemistry, 74, 199-202(2002)
Maria, S. T., Peter, T., Ray, H ., Morris, C. P., and Angela, V. D., ”Solid-Phase Amplification and Detection: A single-Tube Diagnostic Assay for Infectious Agents”, Molecular Diagnosis,6,131-136(2001)
Marie, K. W., Xinwen, W., Bart, and C. W., “Optimizing the immobilization of single-stranded DNA onto Glass Beads”, Journal of Biochemical and Biophysical Methods,47,221-231(2001)
Mark, S. T., Sarah, P., Angela, S., Valentine, J. H., Ray, H., Morris, C. P., and Angela, V. D., ”Solid-Phase Amplification for Detection of C282Y and H63D Hemochromatosis (HFE) Gene Mutations”, Clinical Chemistry, 47, 1384-1389(2001)
Markus, R., and Albert, J., ”Biotin-Avidin Microplate Assay for the Quantitative Analysis of Enzymatic Methylation of DNA by DNA Methyltransferases”, The Biochemistry Journal,381,269-272(2000)
Mikhail, A. L., and Andrei, D. M.,” Theoretical Analysis of the Kinetics of DNA Hybridization with Gel-Immobilized Oligonucleotides”, The Journal of Biophysical, 71, 2795-2801(1996)
Minna, S., Jorma, I., and Timo, L., “Solid-Phase PCR with Hybridization and Time resolved luorometry for Detection of HLA-B27”, Clinical Chemistry, 47,498-504
Nathalie, Z., Christophe, G., Dominique, D., Jean, J. P., and Jose R.,” Amination of Polystyrene Microwells Application to the Covalent Grafting of DNA Probes for Hybridization Assays”, Analytical Biochemistry,236,85-94(1996)
Nikiforov, T. T., Rendle, R. B., Kotewicz, M. L., and Rogers, Y. H., ” The Use of Phosphorothioate Primers and Exonuclease Hydrolysis for the Preparation of Single-stranded PCR Products and their Detection by Solid-phase Hybridization”, PCR Methods and Applications,3,285-291(1994)
Riccelli, P. V., Merante, F., Leung, K. T., Bortolin, S., Zastawny, R. L., Wilchek, M. and Bayer, E. A., ”Application of Avidin-Biotin Technology : Literature Survey”, Methods in Enzymology,184,14-45(1990)
Rasmussen, S. R., Larsen, M. R., and Rasmussen, S. E., “Covalent Immobilization of DNA onto Polystyrene Mocrowells : The Molecules Are Only Bound at the 5’ End”, Analytical Biochemistry, 298, 238-142(1991)
Stanley, F. W., Lora, H., Judith, F., Jonathan, N. K., Joseph, P.D., and Kenneth, J., ”Rapid Hybridization Kinetics of DNA Attached to Submicron Latex Particles”, Nucleic Acids Research, 15, 2911-2926(1987)
Thomas, H., Stefan, S., Erok, H., and Mathias, U., ”Direct Solid Phase Sequencing of Genomic and Plasmid DNA using Magnetics Beads As Solid Support”, Nucleic Acids Research, 17, 4937-4945(1989)
Tomoko A., Tetsushi, Y., Masaru, I., Kyoko, S., Sadao, S., Mikio, N., Minoru, N., and Yoshizo, A., “Quantitation of Human Herpesvirus 6 DNA in Infant with Exanthem Subitum by Microplate PCR-Hybridization Assay”, Pediatrics International, 43, 372-378(2001) Troels, K., Nana, J., Jef, F., Ulrich, B., Mogens, F., and Mogens, H.J., ”Photochemical Immobilization of Anthraquinone Conjugated Oligonucleotides and PCR Amplications on Solid Surfaces”, Bioconjugate Chemistry,11,474-483(2001)
Uhlen, M., Hultman, T., Wahlberg, J., Lundeberg, J., Bergh, S., Pettersson, B., Holmberg, A., Stahl, S., Moks, T., “Semi-automated solid-phase DNA Sequencing”, Trends Biotechnol,10,52-55(1992)
Voshiaki, T. I., Mitsuru, I., and Hirano, K. I., “Investigation of the Hydrolysis of Single DNA Molecules Using Fluorescence Video Microscopy”, Analytical Chemistry, 72,1649-1656(2000)
Wolf, S. F., Haines, L., Fosh, J. N., Dougherty, J. P., and Jacobs, K., “Rapid Hybridization Kinetics of DNA Attached to Submicron Latex Particles”, Nucleic Acids Research, 15, 2911-2926(1987)
Zammatteo, N., Girardeaux, C., Delforge, D., Pireaux, J. J., and Remacle, J., “Amination Polystyrene Microwells: Application to the Covalent Grafting of DNA Probes for Hybridization Assays”, Analytical Biochemistry, 236,85-94(1996)
Zammatteo, N., Girardeaux, C., Delforge, D., Pireaux, J. J., and Remacle, J., ”Comparison between Microwells and Beads Supports for the Detection of Human Cytomegalovirus Amplicons by Sandwich Hybridization”, Analytical Biochemistry, 253,180-189(1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 狄明德(1999),論家庭──從傳統到現代。應用心理研究,4期,229-235頁。
2. 李鴻章(1999),臺灣地區背景因素對子女教育的影響之變遷:以民國73年和民國86年做比較。教育與心理研究,22期,251-266頁。
3. 呂玉瑕(2001),性別、家庭與經濟:分析小型家庭企業老闆娘的地位。臺灣社會學,2期,163-217頁。
4. 伊慶春、楊文山、蔡瑤玲(1992),夫妻衝突處理模式的影響因素:丈夫、妻子、和夫妻配對樣本的比較。中國社會學刊,16期,25-54頁。
5. 毛冠貴(2002),臺灣西部沿海養殖地區轉型使用機制之研究。農業經濟半年刊,72期,1-43頁。
6. 周裕欽、廖品蘭(1997),出身背景、教育程度及對子女教育期望之關連性研究。教育與心理研究,20期,313-330頁。
7. 林芳玫、蔡佩珍(2003),性別主流化:促進婦女權益的新思維。社區發展季刊,第101期,29-41頁。
8. 林雅容(即將刊登),經濟變動中女性養家者的夫妻權力:以東石漁村為例。臺大社會工作學刊,第十三期。
9. 林萬億(2002),臺灣的家庭變遷與家庭政策。臺大社會工作學刊,第六期,35-88頁。
10. 邱俊凱、游美惠(2003),澎湖縣七美鄉已婚婦女的照顧責任與生活處境:一個女性主義民族誌的研究。社區發展季刊,101期,148-162頁。
11. 施世駿(2002),生命歷程研究對社會政策效果的探討。社會政策與社會工作學刊,第六卷第一期,101-156頁。
12. 唐先梅(1996),什麼是家務工作?家務工作本質之初探。空大生活科學學報,第2期,209-236頁。
13. 徐宗國(2001),拓邊照顧工作:男護士在女人工作世界中得其所在。臺灣社會學刊,26期,163-210頁。
14. 高淑貴(1997),漁村婦女在家庭經營決策參與之研究。臺大農業推廣學報,13期,19-53頁。
15. 張志堯(2003),雙薪家庭中階級與夫妻權力關係之探討。應用心理研究,17期,187-221頁。