跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏清哲
研究生(外文):Ching-Cher S. Yan
論文名稱:碎形方法研究固態表面吸附催化過程之異相效應
論文名稱(外文):Fractal Approaches of Heterogeneity Effects on Adsorption and Catalysis over Solid Surfaces
指導教授:李錫隆李錫隆引用關係
指導教授(外文):Shyi-Long Lee
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:154
中文關鍵詞:反應震盪多碎形分析電腦模擬金屬氧化一氧化碳氧化蒙地卡羅
外文關鍵詞:subsurface oxygendynamic scaling analysisMonte Carlo computer simulationmultifractal analysiskinetic oscillation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本工作致力於利用碎形的概念來研究異相效應對於固態表面上的吸附、催化反應的影響。理論的推導包括了將碎形表面的孔洞大小分佈擴展成適合描述真實情況的固體表面。並提出孔洞半徑與吸附熱的關係假說,進一步發展出引入碎形維度的吸附覆輔v函數,以供實驗數據與表面情況之關聯。
多碎形分析法則用於分析表面的不規則結構對於反應機率分佈的影響。並且進一步比較平整表面、粗糙表面和碎形表面的差異,結果發現多碎形曲線的寬度對應於表面粗糙程度。
將催化反應機率分佈隨時間演進作動態指數分析,結果發現時間與空間指數參數都呈現負值,這是由於反應機率分佈有趨近平整的趨勢。時間指數參數與表面的粗糙程度無關,而空間指數參數則可用來表示不規則形狀所造成的遮蔽程度與催化劑大小的關聯性。
用於解釋鉑催化一氧化碳氧化反應震盪的表面金屬氧化模型,我們發現,在加入變溫效應後,該模型所預測的結果與實驗結果較相符,因為預測的震盪週期較短,且在高反應速率狀態下,一氧化碳的覆輔v也較低。
Theoretical approaches based on fractal scaling relations are applied to analyze the effects of geometric heterogeneities on adsorption. Pore size distribution of fractal surfaces are generalized for real “partially correlated” surfaces in nature and extends the application range of fractal approach. Relationship between pore radius and adsorption energy is proposed and upon this relation, a novel isotherm equations is established by introducing fractal dimension based on thermodynamics.
Multifractal analysis is applied on to analyze the effect of geometric heterogeneity on reaction probability distribution for reaction over rough surfaces. Comparisons are made from smooth to rough and fractal surfaces and found that spectrum width corresponds to the extent of heterogeneity.
Dynamic scaling analysis is adopted to study the evolution of catalysis occurring within complex surface structure. Remarkable negative temporal and spatial exponents are produced to reveal the dependence of screening extent on catalyst size.
Oxide model for kinetic oscillation of CO oxidation is modified by introducing temperature variation considering the possibility of overheating. The nonisothermal oxide model is found in better agreement with experiments with shorter periods and lower maximum CO coverage during oscillation.
Acknowledgement i
Abstracts ii
摘 要 iii
Contents iv
Contents of Tables vi
Contents of Figures vii
List of Symbols xi
1. Introduction 1
2. Adsorption on Heterogeneous Surfaces: Fractal Approaches 7
2.1 Introduction 12
2.2 Theory 15
2.2.1 The Derivation of Universal Adsorption Energy Distribution Function 15
2.2.2 Relationship between Geometric and Energetic Heterogeneity 19
2.2.3 Pore Size Distribution of Real Solid Surfaces 21
2.2.4 Real Solid Surfaces are Partially Correlated 24
2.3 Results and Discussion 26
2.3.1 Adsorption at Submonolayer Coverages 26
2.3.2 Introducing the Effect of Multilayer Adsorption 29
2.3.3 Application of the General Fractal BET Equations 31
2.3.4 Adsorption Energy Distribution and Geometric Surface Heterogeneities 34
2.4 Summary 36
3. Catalysis over Heterogeneous Surface: Spatial Analysis by Multifractal Scaling 38
3.1 Diffusion Limited Reactions over Rough Surfaces 40
3.2 Introduction of Multifractal Scaling Analysis 43
3.3 Multifractal Spectrum for Surfaces with Different Extent of Roughness 47
3.4 Source code 53
4. Catalysis over Heterogeneous Surfaces: Temporal Analysis by Dynamic Scaling 56
4.1 Introduction 59
4.2 Methods 63
4.2.1 Diffusion Limited Aggregation 63
4.2.2 Random Deposition 63
4.2.3 Diffusion Limited Reaction Simulation 65
4.2.4 Dynamic Scaling Analysis 66
4.3 Results 69
4.4 Discussions 75
4.5 Conclusion 78
4.6 Source Codes 80
5. Kinetic Oscillation 89
5.1 Introduction of Kinetic Oscillation 93
5.1.1 Effect of Temperature Variation 95
5.1.2 Introduction of Synchronization 97
5.2 Monte Carlo Simulation Methods 100
5.2.1 Mechanism 100
5.2.2 Monte Carlo Simulation of Reactions and Diffusion 101
5.2.3 Temperature Variation 103
5.2.4 Synchronization via Thermal Conduction 106
5.3 Result and Discussions 110
5.3.1 Effect of Temperature Variation 110
5.3.2 Effect of Size Accompanied with Heat dissipation 118
5.3.3 Effect of Diffusion 121
5.3.4 Effects on Synchronization 124
5.4 Conclusion 130
5.5 Source Code 132
6. Concluding Remarks 139
References 143
Aluko, M.; Chang, H.-C. “Dynamic modeling of a heterogeneously catalyzed system with stiff Hopf bifurcation” Chem. Eng. Sci. 1986, 41, 317.
Avnir, D., Ed. The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers; John Wiley: Chichester, 1989.
Avnir, D.; Farin, D.; Pfeifer, P. “Surface geometric irregularity of particulate materials: The fractal approach” J. Colloid Interface Sci. 1985, 103, 112.
Avnir, D.; Jaroniec, M. “An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials” Langmuir 1989, 5, 1431.
Avnir, D.; Gutfraind, R.; Farin, D. Fractal analysis in heterogeneous chemistry In Fractals in Science; Bunde, A.; Havlin, S., Eds.; Springer-Verlag: Berlin Heidelberg, 1994.
Avnir, D.; Biham, O.; Lidar, D.; Malcai, O. “Is the geometry of nature fractal?” Science 1998, 279, 39.
Bahou, M.; Schrivermazzuoli, L.; Camypeyret, C.; Schriver, A.; Chiavassa, T.; Aycard, J. P. “Infrared matrix spectra of the N2O •••O2 complex in solid nitrogen. The N2O ••• O2+O thermal diffusion limited reaction” Chem. Phys. Lett. 1997, 265, 145.
Barabsi, A.-L.; Stanley, H. E. Fractal Concepts in Surface Growth; Cambridge University Press: New York, 1995.
Bogoyavlenskiy, V. A.; Chernova, N. A. “Diffusion-limited aggregation: A relationship between surface thermodynamics and crystal morphology” Phys. Rev. E 2000, 61, 1629.
Butala, H. D.; Ramakrishnan, A.; Sadana, A. “A fractal analysis of analyte-estrogen receptor binding and dissociation kinetics using biosensors: environmental and biomedical effects” BioSystems 2003, 70, 235.
Castro, M.; Cuerno, R.; Sanchez, A.; Dominguezadame, F. “Multiparticle biased diffusion-limited aggregation with surface diffusion: A comprehensive model of electrodeposition” Phys. Rev. E 2000, 62, 161.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “Effect of surface roughness on diffusion limited reactions, a multifractal scaling analysis” Chem. Phys. Lett. 2002a, 351, 341.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “Eley-Rideal diffusion limited reactions over rough surface” Phys. Chem. Chem. Phys. 2002b, 4, 5330.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “Multifractal scaling analysis of autopoisoning reactions over a rough surface” J. Phys. A: Math. Gen. 2003, 36, 3757.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “Multifractal analysis of growing surfaces” Appl. Surf. Sci. 2004a, 238, 513.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “2A + B2 2AB catalytic reaction over rough surface: the effect of Eley-Rideal mechanism” Catal. Today 2004b, 97, 89.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “Dynamic scaling for Eley-Rideal reactions over rough surface” Int. J. Chem. Kinet. 2004c, 36, 286.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “Eley-Rideal reactions over rough surface: effect of sticking probability” Chem. Phys. 2005a, 309, 103.
Chaudhari, A.; Yan, C.-C. S.; Lee, S.-L. “Autopoisioning reactions over rough surface: a multifractal scaling analysis” Int. J. Chem. Kinet. 2005b, 37, 175.
Chvez, F.; Vicente, L.; Perera, A.; Moreau, M. “Effect of inert sites on the kinetic oscillations in the catalytic CO oxidation on Pt(100)” J. Chem. Phys. 1998, 109, 8617.
Cheng, L. S.; Yang, R. T. “Improved Horvath-Kawazoe equations including spherical pore models for calculating micropore size distribution ” Chem. Eng. Sci. 1994, 49, 2599.
Cirak, F.; Cisternas, J. E.; Cuitio, A. M.; Ertl, G.; Holmes, P.; Kevrekidis, I. G.; Ortiz, M.; Roternund, H. H.; Schunack, M.; Wolff, J. “Oscillatory thermomechanical instability of an ultrathin catalyst” Science 2003, 300, 1932.
Cisternas, J.; Holmes, P.; Kevrekidis, I. G.; Li, X. “CO oxidation on thin Pt crystals: temperature slaving and the derivation of lumped models” J. Chem. Phys. 2003, 118, 3312.
Coffey, W. T. Development and application of the theory of Brownian motion In Dynamical Processes in Condensed Matter; Evans, M. W.; Prigogine, I.; Rice, S., Eds.; Wiley: New York, 1995. Adv. Chem. Phys. 1985, 63, 69.
Collins, N. A.; Sundaresan, S.; Chabal, Y. J. “Studies on self-sustained reaction-rate oscillations III. The carbon model” Surf. Sci. 1987, 180, 136.
Crossley, A.; King, D. A. “Adsorbate island dimensions and interaction energies from vibrational spectra: CO on Pt(001) and Pt(111)” Surf. Sci. 1980, 95, 131.
Dharmadhikari, C. V.; Ali, A. O.; Suresh, N.; Phase, D. M.; Chaudhari, S. M.; Ganesan, V.; Gupta, A.; Dasannacharya, B. A. “Dynamic scaling in growth of platinum films on Si(100)” Solid State Commun. 2000, 114, 377.
Do, D. D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, 1998.
Edwards, S. F.; Wilkinson, D. R. “The surface statistics of a granular aggregate” Proc. R. Soc. Lond. A, 1982, 381, 17.
Ehrburger-Dolle, G. “Analysis of the derived curves of adsorption isotherms” Langmuir, 1997, 13, 1189.
Ehrburger-Dolle, G. “A new way to analyze adsorption isotherms” Langmuir, 1999, 15, 6004.
Eiswirth, M.; Ertl, G. Pattern formation on catalytic surfaces In Chemical Waves and Patterns; Kapral, R.; Showalter, K., Eds.; Kluwer: Dordrecht, 1994.
Ertl, G.; Norton, P. R.; Rstig, J. “Kinetic oscillations in the platinum-catalyzed oxidation of CO” Phys. Rev. Lett. 1982, 49, 177.
Family, F. “Scaling of rough surfaces: effects of surface diffusion” J. Phys. A: Math. Gen. 1986, 19, L441.
Family, F.; Vicsek, T. “Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model” J. Phys. A: Math. Gen. 1985, 18, L75.
Fanson, P. T.; Delgass, W. N.; Lauterbach, J. “Island formation during kinetic rate oscillations in the oxidation of CO over Pt/SiO2: a transient Fourier transform infrared spectrometry study” J. Catal. 2001, 204, 35.
Giona, M.; Giustiniani, M.; Ludlow, D. “Influence of geometric and energetic heterogeneity on adsorption isotherms” Fractals 1995, 3, 235.
Given, J. A.; Hubbard, J. B.; Douglass, J. F.; “A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction rate of macromolecules” J. Chem. Phys. 1997, 106, 3761.
Gloss, L. M.; Matthews, C. R. “Mechanism of folding of the dimeric core domain of Escherichia coli Trp repressor: A nearly diffusion-limited reaction leads to the formation of an on-pathway dimeric intermediate” Biochemistry 1998, 37, 15990.
Gregg, S. J.; Sing, K. S. Adsorption, Surface Area and Porosity; Academic Press: New York, 1982.
Gruyters, M.; King, D. A. “Effect of restructuring in adsorption and reaction dynamics at metal surfaces” J. Chem. Soc., Faraday Trans. 1997, 93, 2947.
Hartmann, N.; Imbihl, R.; Vogel, W. “Experimental evidence for an oxidation/reduction mechanism in rate oscillations for catalytic CO oxidation on Pt/SiO2” Catal. Lett. 1994, 28, 373.
Hellen, E. K. O.; Simula, T. P.; Alava, M. J. “Dynamic scaling in one-dimensional cluster-cluster aggregation” Phys. Rev. E 2000, 62, 4752.
Henry, C. R. “Surface studies of supported model catalysts” Surf. Sci. Rep. 1998, 31, 235.
Hill, S. C.; Alexander, J. I. D. “Modified diffusion-limited aggregation simulation of electrodeposition in two dimensions” Phys. Rev. E 1997, 56, 4317.
Hobson, J. P.; Armstrong, R. A. “A study of physical adsorption at very low pressures using ultrahigh vacuum techniques” J. Phys. Chem. 1963, 67, 2000.
Hohenberg, P. C.; Halperin, B. I. “Theory of dynamic critical phenomena” Rev. Mod. Phys. 1977, 49, 435.
Hudson, J. L.; Hart, M.; Marinko, D. “An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction” J. Chem. Phys. 1979, 71, 1601.
Imbihl, R.; Ertl, G. “Oscillatory kinetics in heterogeneous catalysis” Chem. Rev. 1995, 95, 697.
Jaroniec, M; Lu, X.; Madey, R.; Avnir, D. “Thermodynamics of gas adsorption on fractal surfaces of heterogeneous microporous solids” J. Chem. Phys. 1990, 92, 7589.
Jaroniec, M.; Choma, J. Characterization of Geometrical and Energetic Heterogeneities of Active Carbons by Using Sorption Measurements. In Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces; Rudzinski, W., Steele, W. A., Zgrablich, G., Eds.; Elsevier: New York, 1997.
Kaminsky, R. D.; Maglara, E.; Conner, W. C. “A direct assessment of mean-field methods of determining pore size distributions of microporous media from adsorption isotherm data” Langmuir 1994, 10, 1556.
Kovacs, T.; Bardos, G. “Cluster growth by diffusion-limited aggregation in shear flow” Physica A 1997, 247, 59.
Lauterbach, J.; Bonilla, G.; Pletcher, T. D. “Non-linear phenomena during CO oxidation in the mbar pressure range: a comparison between Pt/SiO2 and Pt(100)” Chem. Eng. Sci. 1999, 54, 4501.
Lee, S.-L.; Luo, Y. L. “Simulation of diffusion-limited aggregation: effects of launching boundary shape and non-fixed centre” Chem. Phys. Lett. 1992, 195, 405.
Lee, S.-L.; Chu, C. H.; Luo, Y. L.; Ho, J. J. “Multifractal analysis of diffusion-limited reactions over surfaces of diffusion-limited aggregates” Chem. Phys. Lett. 1993, 207, 220.
Lee, C.-K.; Lee, S.-L. “Multifractal scaling analysis of reactions over fractal surfaces” Surf. Sci. 1995, 325, 294.
Lee, C.-K.; Lee, S.-L. “Heterogeneity of surfaces and materials, as reflected in multifractal analysis” Heterogeneous Chem. Rev. 1996, 3, 269.
Lee, S.-L.; Lee, C.-K. “Heterogeneous reactions over fractal surfaces: a multifractal scaling analysis” Int. J. Quant. Chem. 1997, 64, 337.
Lee, J. W. “Dimensional crossover of diffusion-limited reaction in a quasi-one-dimensional lattice” J. Chem. Phys. 2000, 113, 9702.
Levitz, P.; Van Damme, H.; Fripiat J. J. “Growth of adsorbed multilayers on fractal surface” Langmuir 1988, 4, 781.
Liauw, M. A.; Plath, P. J.; Jaeger, N. J. “Complex oscillations and global coupling during the catalytic oxidation of CO” J. Chem. Phys. 1996, 104, 6375.
Lindstrom, T. H.; Tsotsis, T. T. “Reaction rate oscillations during CO oxidation over Pt/λ-Al2O3: Isothermal, intermediate pressure conditions” Surf. Sci. 1986, 171, 349.
Liu, X. P.; Miller, M. J. S.; Joshi, M. S.; Sandowskakrowicka, H.; Clark, D. A.; Lancaster, J. R. “Diffusion-limited reaction of free nitric oxide with erythrocytes” J. Biol. Chem. 1998, 273, 18709.
Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. “Subsurface oxygen in the CO oxidation reaction on Pt(110): experiments and modeling of pattern formation” J. Phys. Chem. 1998, 102, 4496.
Pang, N. N.; Tzeng, W. J. “Anomalous dynamic scaling of interfaces in disordered media” Phys. Rev. E 1999, 59, 234.
Peitgen, H.-O.; Jrgens, H.; Saupe, D. Chaos and Fractals: New Frontiers of Science; Springer-Verlang: New York, 1992.
Pfeifer, P.; Kenntner, J.; Cole, M. W. Proceedings of the Conference on Fundamentals of Adsorption; Sonthofen, 1989.
Pines, V.; Chait, A.; Zlatkowski, M. “Dynamic scaling in dendritic growth” J. Crystal Growth 1996, 167, 777.
Pines, V.; Chait, A.; Zlatkowski, M. “Dynamic scaling in dendritic growth: significance of the initial nucleus size” J. Crystal Growth 1997, 182, 219.
Reverberi, A. P.; Scalas, E. “Dynamic scaling of a reaction-limited decay process” Physica A 1998, 254, 348.
Rice, S. A. Diffusion-limited reactions In Comprehensive Chemical Kinetics, Vol. 25; Bamford, C. H.; Tipper, C. F. H.; Compton, R. G.;, Eds.; Elsevir: Amsterdam, 1985.
Roternund, H. H.; Pollmann, M.; Kevrekidis, I. G. “Pattern formation during the CO-oxidation involving subsurface oxygen” Chaos 2002, 12, 157.
Rudzinski, W.; Everett, D. H. Adsorption of Gases on Heterogeneous Surface; Academic Press: London, 1992.
Rudzinski, W.; Lee, S.-L.; Yan, C.-C. S.; Panczyk, T. “A fractal approach to adsorption on heterogeneous solid surfaces. 1. The relationship between geometric and energetic surface heterogeneities.” J. Phys. Chem. B 2001a, 105, 10847.
Rudzinski, W.; Lee, S.-L.; Panczyk, T.; Yan, C.-C. S. “A fractal approach to adsorption on heterogeneous solid surfaces. 2. Thermodynamic analysis of experimental adsorption data” J. Phys. Chem. B 2001b, 105, 10857.
Sales, B. C.; Turner, J. E.; Maple, M. B. “Oscillatory oxidation of CO over Pt, Pd and Ir catalysts: theory” Surf. Sci. 1982, 114, 381.
Sander, L. M.; Ghaisas, S. V. “Monte Carlo simulations of oscillation in the oxidation of CO on Pt at atmospheric pressure” Surf. Sci. 1997, 391, 125.
Schmitz, R. A.; D’Netto, G. A.; Razon, L. F.; Brown, J. R. In Chemical Instabilities; Nicolas, G.; Baras, F.; Eds.; Reidel: Dordrecht, 1984.
Schth, F; Wiche, E. “IR Spectroscopic Investigations during Oscillations of the CO/NO and the CO/O2 Reaction on Pt and Pd Catalysts. II: Palladium” Ber. Bunsenges. Phys. Chem. 1989, 93, 491.
Schth, F.; Henry, B. E.; Schmidt, L. D. “Oscillatory reactions in heterogeneous catalysis” Adv. Catal. 1993, 39, 51.
Slinko, M. M.; Kurkina, E. S.; Liauw, M. A. “Mathematical modeling of complex oscillatory phenomena during CO oxidation over Pd zeolite catalysts” J. Chem. Phys. 1999, 111, 8105.
Steinbrchel, Ch.; Schmidt, L. D. “Heat dissipation in catalytic reactions on supported crystallites” Surf. Sci. 1973, 40, 693.
Svensson, P.; Jaeger, N. I.; Plath, P. J. “Phase and frequency relations with forced oscillations of the heterogeneous catalytic oxidation of CO on supported Pd” J. Phys. Chem. 1988, 92, 1882.
Thomas, J. M.; Thomas, W. J. Principles and Practice of Heterogeneous Catalysis; VCH Press: Weinheim, 1997.
Vicsek, T. Fractal Growth Phenomena; World Scientific Press: Singapore, 1989.
Witten, T. A.; Sander, L. M. “Diffusion-limited aggregation, a kinetic critical phenomenon” Phys. Rev. Lett. 1981, 47, 1400.
Yan, C.-C.; Chaudhari, A.; Lee, S.-L. “Dynamic scaling of diffusion-limited reactions over fractal surfaces: computer simulation” Appl. Surf. Sci. 2002, 196, 375.
Yan, C.-C. S.; Chuang, W.-T.; Chaudhari, A.; Lee, S.-L. “Kinetic oscillation of carbon monoxide oxidation over nano-scaled catalyst involving temperature variation” Chem. Phys. Lett. 2004, 400, 245.
Yan, C.-C. S.; Chuang, W.-T.; Chaudhari, A.; Lee, S.-L. “Lattice model studies of CO oxidation kinetic oscillation over nano-scaled Pt particle: Effect of temperature variation and diffusion” Appl. Surf. Sci. 2005a, in press.
Yan, C.-C. S.; Yang, C.-Y.; Lee, S.-L. “Lattice model studies of synchronization between two kinetic oscillatory catalysts via thermal conduction” J. Theor. Comput. Chem. 2005b, submitted.
Yin, Y. “Adsorption isotherm on fractally porous materials” Langmuir 1991, 7, 216.
Zhdanov, V. P. “Simulation of kinetic oscillations in catalytic reactions accompanied by oxide formation” Surf. Rev. Lett. 1999, 6, 347.
Zhdanov, V. P. “Oscillations in catalytic reactions on the nm scale” Catal. Lett. 2000, 69, 21.
Zhdanov, V. P. “Impact of surface science on the understanding of kinetics of heterogeneous catalytic reactions” Surf. Sci. 2002, 500, 966.
Zhdanov, V. P. “Kinetic oscillations on nm-sized catalyst particles: NO reduction by CO on Pt” Catal. Lett. 2004, 93, 135.
Zhdanov, V. P.; Kasemo, B. “Kinetic phase transitions in simple reactions on solid surfaces” Surf. Sci. Rep. 1994, 20, 111.
Zhdanov, V. P.; Kasemo, B. “Simulations of the reaction kinetics on nanometer supported catalyst particles” Surf. Sci. Rep. 2000, 39, 25.
Zhdanov, V. P.; Kasemo, B. “Heat dissipation in exothermic reactions on non-traditional supported catalysts” Catal. Lett. 2001a, 75, 61.
Zhdanov, V. P.; Kasemo, B. “Coupled catalytic oscillators: beyond the mass-action law” Chaos 2001b, 11, 335.
Zhdanov, V. P.; Kasemo, B. “Kinetic oscillations on nm-sized catalyst particles: oxide model” Surf. Sci. 2002, 511, 23.
Zhdanov, V. P.; Kasemo, B. “Simulations of kinetic oscillations in the CO + O2 / Pt reaction on the nm scale” J. Catal. 2003, 214, 121.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 邱坤玄,「中共大國外交與獨立自主外交」。共黨問題研究,第26卷11期(2000
2. 邱坤玄,「中共大國外交與獨立自主外交」。共黨問題研究,第26卷11期(2000
3. 王央城、賴宗男,「能源安全:美國國家安全戰略新焦點」。戰略安全研析,第
4. 朱興珊、周騫慧,「尋找明天的石油」。中國國家地理(北京),第530期2004
5. 邱坤玄,「中共大國外交與獨立自主外交」。共黨問題研究,第26卷11期(2000
6. 朱興珊、周騫慧,「尋找明天的石油」。中國國家地理(北京),第530期2004
7. 朱興珊、周騫慧,「尋找明天的石油」。中國國家地理(北京),第530期2004
8. 伍向豪,「全球化下的路徑依賴:以國際關係理論與中共外交為例」。展望與探索,
9. 伍向豪,「全球化下的路徑依賴:以國際關係理論與中共外交為例」。展望與探索,
10. 伍向豪,「全球化下的路徑依賴:以國際關係理論與中共外交為例」。展望與探索,
11. 王央城、賴宗男,「能源安全:美國國家安全戰略新焦點」。戰略安全研析,第
12. 王央城、賴宗男,「能源安全:美國國家安全戰略新焦點」。戰略安全研析,第
13. 于有慧,「中共外交政策走向與選擇」。問題與研究,第43卷第1期(民93年1、
14. 于有慧,「中共外交政策走向與選擇」。問題與研究,第43卷第1期(民93年1、
15. 于有慧,「中共外交政策走向與選擇」。問題與研究,第43卷第1期(民93年1、