跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/27 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅文亨
研究生(外文):wen hen
論文名稱:利用室溫離子液體以萃取/氧化法進行油品脫硫及脫氮之研究
論文名稱(外文):Desulfurization and Denitrogenation of Oil Streams by Extraction/Oxidation in Room Temperature Ionic Liquid System
指導教授:魏國佐
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:117
中文關鍵詞:離子液體氧化萃取脫氮脫硫
外文關鍵詞:Ionic liquidoxidationextractiondenitrogenationdesulfurization
相關次數:
  • 被引用被引用:7
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:1
降低油品中硫含量、氮含量可以降低油品燃燒後所造成的空氣污染與及其所導致酸雨的形成。面對法規愈趨嚴格要求,各煉油廠對於油品中硫含量的規範更加嚴格,再加上工業上使用的加氫脫硫方法需要在更高溫度與更高氫氧壓力下操作,才能降低油品中的硫含量,此將増加操作成本與風險。因此在傳統加氫脫硫及脫氮技術外其他更有效的替代製程是急需被研究開發,以氧化和萃取方法進行去除油品中所含硫化物、氮化物是目前熱門的替代方案之一。
本研究是在室溫離子液體的系統中藉由結合氧化和萃取方式在同一容器內來脫除油品中所含硫化物,系統使用的室溫離子液體被歸屬為Green Solvent,因為它具有熱穩定性高及高溫不揮發等特性,且可溶解很多類型的化合物,因此可用來取代傳統的有機溶劑以進行液相-液相的萃取。本研究使用的室溫離子液體如1-烷基-3-甲基咪唑四氟硼酸鹽(1-alkyl-3-ethylimidazotetrafluoroborate) 和1-烷基-3-甲基咪唑六氟磷酸(1- alkyl -3-methylimidazohexafluorophosphate),在本反應系統中可藉由液相-液相的萃取模式將油品的硫化物萃取到離子液體中,再經由過氧化氫及有機酸的氧化反應將離子液體內硫化物氧化形成硫氧化物,氧化後的硫氧化物祇會分佈在離子液體相內,此系統可將油中的硫化物不斷的萃取到室溫離子液體相,並讓氧化反應持續的進行。本方法在溫和條件下便可將加氫脫硫觸媒很難脫除的二苯基噻吩此類型的化合物從油品中除去,有效的降低蒸餾柴油的含硫濃度,達到深度脫硫(小於50ppm)的目的。
另外油品所含氮化物的極性大於硫化物,離子液體對模式油品萃取具有相當高的脫氮效率,當離子液體加酸後能有效的提高對鹼性氮化物的萃取率,而離子液體加酸後對真實油品脫氮效率也能達到80% (從78ppm降低到15ppm)。初步結果顯示反應後的離子液體可利用反萃取技術,使離子液體可以回收再循環使用。
The sulfur and nitrogen compounds in oils are converted by combustion to SOx and NOx, which are the major source of acid rain and air pollution. Hence, the air pollution decreased by removing sulfur and nitrogen compounds from oils. Government regulations have set the limit of the sulfur content in oil very low for oil refineries. Hydrogen desulfurization (HDS) is the only method being employed in oil refineries. With the HDS method, a higher temperature and higher pressure of hydrogen gas than that of current operation is required to produce the light oil that have lower levels of sulfur compounds to meet the requirement of new regulations. This will increase the cost of HDS operation and risk of explosion. In order to produce low S and N oil, alternative technologies are of particular interest in providing potential solutions to replace HDS. Extraction and oxidation have the potential to become the alternative approach for desulfurization and denitrogenation of fuel oils.
In this research, a desulfurization/denitrogention process for fuel oil was investigated based on a combination of chemical oxidation and solvent extraction with room-temperature ionic liquids (RTILs). RTILs are regarded as “green solvents”. Generally, they are thermally stable, non-volatile, and can dissolve various types of compounds. RTILs have recently gained recognition as alternative traditional solvents for liquid- liquid extraction systems. In this work, 1-alkyl-3-methylimidazolium tetrafluoroborate and 1-alkyl-3-methylimidazolium hexafluorophosphate were empolyed as reaction media for for S and N removal from fuel oils.
Dissolving sulfur and nitrogen compounds in hexadecane was employed as model oil for this study. Oils and ionic liquids were stirred in the presence of H2O2 and organic acid. Sulfur compounds in oil were extracted into the ionic liquid phase and oxidized there into the corresponding oxidative compounds. These products have high polarity and are distributed in the ionic liquid phase, thus providing a successive removal of sulfur from oil. This method was carried out at moderate temperature and can easily treat dibenzothiophene (DBT) compounds, which are difficult to be removed by current HDS method. With this process, the sulfur content of the actual light oil can be reduced from 665ppm to less than 50ppm (ultradeep desulfurization level) in one batch operation. On the other hand, the extraction efficiency of nitrogen compounds is RTILs rather high because nitrogen compounds have higher polarity than those of sulfur compounds. The efficiency of denitrogenation could be improved by mixing room-temperature ionic liquids with acid. The efficiency of denitrogenation in oil is about 80%(reducing from 78ppm to 15ppm) with a batch of operation. The ionic liquids could be recovered and reused.
目錄
封面
謝誌
中文摘要……………………………………………………………………i
英文摘要………………………………………………………………… iii
目錄……………………………………………………………………… vii
圖目錄…………………………………………………………………… ix
表目錄…………………………………………………………………… xi
符號說明…………………………………………………………………xii

第一章 緒論
1.1硫氮化合物污染簡介……………………………………………… 1
1.2台灣地區硫氮污染含量減量策施………………………………… 4
1.3油品規範…………………………………………………………… 5

第二章 文獻回顧與研究內容
2.1石化工業的加氫脫硫反應………………………………………… 9
2.2萃取脫硫的技術..…………………………………………………13
2.3氧化脫硫的技術………………………………………………… 15
2.4吸附脫硫的技術………………………………………………… 18
2.5 微生物脫硫的技術……………………………………………… 20
2.6.1研究動機…………………………………………………………21
2.6.2研究方法…………………………………………………………22

第三章 離子液體
3.1 離子液體簡介……………………………………………………24
3.2 離子液體物理性質……………………………………………… 28
3.3離子液體的合成及分析……………………………………………30

第四章 油品氧化脫硫反應
4.1.柴油脫硫的模式反應…………………………………………… 33
4.2.藥品、實驗方法及儀器設備………………………………………34
4.2.1藥品………………………………………………………………34
4.2.2實驗方法…………………………………………………………35
4.2.3儀器設備…………………………………………………………35
4.2.4真實油品硫含量分析……………………………………………36
4.3.結果與討論………………………………………………………36
4.3.1不同離子液體對模式油品脫硫的影響…………………………36
4.3.2溫度對脫硫速率的影響…………………………………………41
4.3.3催化劑對脫硫的影響……………………………………………42
4.3.4 DBT氧化反應反應機構的研究…………………………………43
4.3.5 4,6-DMDBT氧化脫硫反應………………………………………44
4.3.6真實油品脫硫的反應…………………………………………. 44
4.3.7加氫脫硫後之柴油氧化脫硫的反應……………………………50
4.3.8離子液體回收及重覆性反應……………………………………51

第五章 油品氧化脫氮反應
5.1油品脫氮的簡介………………………………………………… 53
5.1.2萃取脫氮的技術……………………………………………… 54
5.1.3氧化脫氮的技術……………………………………………… 55
5.1.4 吸附脫氮的技術………………………………………………56
5.2 實驗藥品及儀器分析方法………………………………………57
5.2.1實驗藥品……………………………………………………… 57
5.2.2儀器設備及分析方法………………………………………… 57
5.3結果與討論……………………………………………………….58
5.3.1離子液體對模式氮化合物的萃取效果……………………… 58
5.3.2酸溶液對氮化物萃取的研究……………………………………59
5.3.3離子液體加酸後去除氮化合物的效果…………………………60
5.3.4硫化物對氮化物萃取的影響……………………………………61
5.3.5真實油品萃取脫氮………………………………………………61

第六章 結論………………………………………………………… 65
參考文獻……………………………………………………………… 67
1Zamaraev, K. I.; Hramov, M. I.; Parmon, V. N. Catal. Rev. Sci. Eng. 1994, 36, 617.
2Qi, L.; Hao, J. M.; Lv, M. M. Water& Air Soil Pollut. 1995, 85, 1873.
3Avidan, A.; Klein, B.; Ragsdale, R. Hydrocarbon Process 2001, 2, 47.
4US EPA, Regulatory announcement: heavy-duty engine and vehicle standards and highway diesel fuel sulfur control requirements; December 2000.
5http://www.dieselnet.com/standards/eu/ld.html.
6Whitehurst, D. D.; Isoda, T.; Mochida, I. Adv. Catal. 1998, 42, 345.
7Prins, R.; De Beer, V. H. J.; Somorjai, G. A. Catal. Rev. Sci. Eng. 1989, 31, 1.
8Voss, D. Science 1999, 285, 683.
9Dorbon, M.; Ignatiadis, I.; Schmitter, J. M.; Arpino, P.; Guichon, G.; Toulhoat, H. A. Fuel 1984, 73565.
10Zhang, S.; Zhang, Z. C. Green Chemistry. 2002, 4, 376.
11Eßer, J.; Wasserscheid, P.; Jes, A. Green Chemistry 2004, 6, 316.
12Gilman, H.; Esmay, D. L. J. Am. Chem. Soc. 1952, 71, 869.
13Riley, D. P.; Smith, M. R.; Correa, P. E. J. Am. Chem. Soc. 1988, 110, 177.
14Chien, C. -S.; Kawasaki, T.; Sakamoto, M. Chem. Pharm. Bull. 1985, 11, 5071.
15Thiemann, T.; Li, Y.; Thiemann, C.; Sawada, T.; Ohira, D.; Tashiro, M.; Mataka, S. Heterocycles 2000, 52, 1215.
16Peckham, J. Octane Week 2001, 15, 01.
17Aida, T.; Yamamoto, D.; Iwata, M; Sakata, K. Rev. Heteroatom Chem. 2000, 22, 241.
18Pouzet, P.; Erdelmeier, I.; Ginderow, D.; Mornon J. -P.; Dansette, P. M.; Mansuy, D. J. Chem. Soc., Chem. Comm. 1995, 473.
19Jakobsen, H. J.; Larson, E. H.; Lawesson, S. -O. Tetrahedron 1963, 19, 1867.
20Kabe, T.; Ishihara, A.; Tajima, H. Ind. Eng. Chem. Res. 1992, 31, 1577.
21Attar, A.; Corcoran, W. H. Ind. Eng. Chem. Proc. Res. Dev. 1978, 17, 102.
22Tam, P. S.; Kettrel, J. R.; Eldridge, J. W. Ind. Eng. Chem. Res. 1990, 29, 321.
23Zannikos, F.; Lois, E.; Stournas, S. Fuel Process Technol. 1995, 42, 35.
24Shiraishi, Y.; Tachibana, K.; Hirai, T.; Komasawa, I. Ind. Eng. Chem. Res. 2002, 41, 4362.
25Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W.; Ishihara, A.; Imai, T.; Kabe, T. Energy Fuels 2000, 14, 1232.
26Babich, I. V.; Moulijn, J. A. Fuel 2003, 82, 607.
27Srinivasan, C.; Chellamani, A.; Kuthalingam, P. J. Org. Chem. 1982, 47, 428.
28Guth, E. D.; Diaz, A. F. U.S. Patent 3,847,800, 1974.
29Guth, E. D.; Arledge, N. L. U.S. Patent 3,919,402, 1975.
30Collins, F. M.; Lucy, A. R.; Sharp, C. J. J. Mol. Catal. A 1997, 117, 397.
31Mei, H.; Mei, B. W.; Yen, T. F. Fuel 2003, 82, 405.
32Kholdeeva, O. A.; Grigoriev, V. A.; Maksimov, G. M.; Fedotov, M. A.; Golovin, A. V.; Zamaraev, K. I. J. Mol. Catal. A. 1996, 114, 123.
33Komiya, N.; Naota, T.; Oda, Y.; Murahashi, S. -I. J. Mol. Catal. A. 1997, 117, 21.
34Mastrorilli, P.; Nobile, C. F. Tetrahedron Lett. 1994, 35, 4193.
35Song, G.; Wang, F.; Zhang, H.; Lu, X.; Wang, C. Synth. Commun. 1998, 28, 2783.
36Koch, T. A.; Krause, K. R.; Manzer, L. E.; Mehdizadeh, M.; Odom, J. M.; Sengupta, S. K. New J. Chem. 1996, 20, 163.
37Jenks, W. S.; Taylor, L. M.; Guo, Y.; Wan, Z. Tetrahedron Lett. 1994, 35, 7155.
38Shiraishi, Y.; Tachibana, K.; Hirai, T.; Komasawa, I. Energy Fuels 2003, 17, 95.
39Gregory, D. D.; Wan, Z.; Jenks, W. S. J. Am. Chem. Soc. 1997, 119, 94.
40Natusch, D. F. S.; Tomkins, B. Anal. Chem. 1978, 50, 1429.
41Parkinson, G. Chem. Eng. 2000, 8, 45.
42Irvine, R. L. U.S. Patent 5,730,860, 1998.
43Ichinose, H.; Wariishi, H.; Tanaka, H. Biotechnology Process 1999, 15, 706.
44Konishi, J.; Ishii, Y.; Onaka, T.; Okumura, K. Applied and Environmental Microbiology 1997, 63, 3164.
45Sublette, K. L.; Gwozdz, K. J. Biochemistry Biotechnology 1991, 28, 635.
46Inomta, M.; Sato, K.; Yamada, Y.; Sasaki, H. Oil and Gas Journal 1997, 95, 56.
47Klein, J.; Pfeifer, F.; Schacht, S. Fuel Processing Technology 1994, 40, 297.
48Setti, L.; Lanzarini, G.; Pifferi, P. G. Fuel Processing Technology 1997, 52, 145.
49Blanchard, L. A.; Hancut, D.; Beckman, E. J.; Brennecke, J. F. Nature 1999, 399, 28.
50Blanchard, L. A.; Brennecke, J. F. Ind. Eng. Chem. Res. 2001, 40, 287.
51Welton, T. Chem. Rev. 1999, 99, 2071.
52Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H.; Jr. J. Am. Chem. Soc. 2002, 124, 926.
53Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
54Merrigan, T. L.; Bates, E. D.; Dorman; S. C.; Davis, J. H. Chem. Commun. 2000, 2051-2052.
55Sheldon, R. A. Chem. Commun. 2001, 2399.
56Morrison, D. W.; Forbes D. C.; Davis, J. H. Tetrahedron Lett. 2001, 42, 6053.
57Kitazume, T.; Kazai, K. Green Chemistry 2001, 3, 30.
58Earle, M. J.; Mcormac, P. B.; Seddon, K. R. Green Chemistry 1999, 1, 23.
59Carmichael, A. J.; Earle, M. J. Organic Letters 1999, 1, 997.
60Adams, C. J.; Earle, M. J. Chem. Commun. 1998, 2097.
61Seddon, K. R. J. Chem. Technol. Biotechnol. 1997, 68, 351.
62Hagiwara, H.; Sugawara, Y.; Isobe, K.; Hoshi, T.; Suzuki, T. Organic Lett.2004, 6, 2325.
63Ley, S. V.; Ramarao, C.; Smith, M. D. Chem. Commun. 2001, 2278.
64Calo, V.; Giannoccaro, P. J. of Organometallic Chemistry 2002, 645 152-
65Qin, W.; Wei, S. F. Y. J. Chromatogr. A 2003, 985, 447.
66Armstrong, D. W.; He, L.; Liu, Y. -S. Anal. Chem. 1999, 71, 3873.
67Anderson, J. L.; Pino, V.; Hagberg, E.C.; Sheares, V. V.; Armstrong, D.W. Chem. Comm. 2003, 2444.
68Law, G.; Watson, P. R. Langmuir 2001, 17, 6138.
69Dai, S.; Ju, Y. H.; Barnes, C. E. J. Chem. Soc., Dalton Trans. 1999, 1201.
70Huang, J. -F.; Sun, I. -W. J. Chromat. A. 2003, 1007, 39.
71Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electroanal. Chem., 1998, 459, 29.
72Stephen, K. P. Chem. Eng. News 2001, 79, 27.
73Wasserscheid, P.; Hal, R. V.; Boesmann, A. Green Chemistry 2002, 4, 400.
74Hurlcy, F. H.; Wicr, T. P. J. Electrochem. Soc. 1951, 98, 207.
75Olivier-Bourbigou, H.; Magna, L. J. Mol. Catal. A 2002, 3484, 1.
76Jaeger, D. A.; Tucker, C. E. Tetrahedron Lett. 1989, 30, 1785.
77Ren, R. X.; Wu, J. X. Org. Lett. 2001, 3, 3727.
78Fuller, J.; Carlin, R. T.; Osteryoung, R. A. J. Electrochem. Soc. 1997, 144, 3881.
79Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; Desouza, R. F. Dupond, J. Polyhydron 1996, 15, 1217.
80Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyansundaram, K.; Gratzeb, M. Inorg. Chem. 1996, 35, 1168.
81Selvam, T.; Vinod, M. P.; Vijayamohanan, K. React. Kinet. Catal. Lett. 1997, 60, 137.
82Huddleston, J. G.; Visser, A. E.; Matthew-Reichert, W.; Willauer, H. D; Broker, G. A.; Rogers R. D. Green Chemistry 2001, 3, 156.
83Aida, T.; Yamamoto, D.; Iwata, M.; Sakata, K. Rev. Heteroatom Chem. 2000, 22, 241.
84Aida, T. Catalysts & Catalysis 1995, 37(3), 243.
85Ma, X.; Sakanishi, K.; Mochida, I. Ind. Eng. Chem. Res. 1994, 33, 218.
86Meille, V.; Schulz, E.; Lemaire, M.; Vrinat, M. J. Catal. 1997, 170, 29.
87Ramsden, J. H.; Drago, R. S.; Riley, R. J. Am. Chem. Soc. 1989, 111, 3958.
88Shiraishi, Y.; Hirai, T.; Komasawa, I. Ind. Eng. Chem. Res. 1998, 37, 203.
89Heimlich, B. N.; Wallace, T. J. Tetrahedron 1966, 22, 3571.
90Holland, H. L. Chem. Rev. 1988, 88, 473.
91Filippis, P. D.; Scarsella, M. Energy Fuels 2003, 17, 1452.
92Lindstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225.
93Varma, R. S. Green Chemistry 2001, 3, 98.
94Camaioni, D. M.; Bays, J. T.; Shaw, W. J.; Linehan, J. C.; Birnbaum, J. C. J. Org. Chem. 2001, 66, 789.
95Treiber, A. J. Org. Chem. 2002, 67, 7261.
96Shiraishi, Y.; Taki, Y.; Hirai, T.; Komasawa, I. Ind. Eng. Chem. Res. 1999, 38, 4538.
97Bosmann, A.; Datsevich, L.; Jess, A.; Lauter, A.; Schmitz, C.; Wasserscheld, P. Chem. Commun. 2001, 2494.
98Zhang, S.; Zhang, Z. C. Ind. Eng. Chem. Res. 2004, 43, 614.
99Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Green Chemistry 2003, 5, 361.
100Gubicza, L.; Nemestóthy, N.; Fráter, T.; Bélafi-Bakó, J. Green Chemistry 2003, 5, 236.
101Shiraishi, Y.; Hirai, T.; Komasawa, I. Ind. Eng. Chem. Res. 2000, 39, 2826.
102Girgis, M. J.; Gates, B. C. Ind. Eng. Chem. Res. 1991, 30, 2021.
103König, A.; Herding, G.; Hupfeld, B.; Richter, T.; Weidmann, K. Top.Catal. 2002, 16/17, 23.
104Seunghan, S.; Kinya, S.; Isao, M. Energy Fuels 2000, 14, 539.
105Sonawane, H. R.; Pol, A. V.; Moghe, P. P.; Biswas, S. S.; Sudalai, A. J. Chem. Soc., Chem. Commun. 1994, 1215.
106Fathoni, A. Z.; Batts, B. D. Energy Fuels 1992, 6, 681.
107Zeuthen, P.; Knudsen, K. G.; Whitehurst, D. D. Catal. Today 2001, 65, 307.
108Shin, S.; Yang, H.; Sakanishi, K.; Mochida, D. A.; Groudoski, D. A.; Shinn, J. H. Appl. Catal. A 2003, 243, 207.
109Laredo, G. C.; Altamirano, E.; De los Reyes, J. A. Appl. Catal. A 2003, 243 (2), 207.
110Te, M.; Fairbridge, C.; Ring, Z. Appl. Catal. A 2001, 219, 267.
111Sano, Y.; Choi, K. -H.; Korai, Y.; Mochida, I. Appl. Catal. B 2004, 49, 219.
112Sano, Y.; Sugahara, K.; Choi, K. -H.; Korai, Y.; Mochida, I. Fuel 2005, 84, 903.
113Choi, K. -H.; Korai, Y.; Mochida, I. Appl. Catal. B 2004, 50, 9.
114Bonchio, M.; Campestrini, S.; Conte, V.; Furia, F. D.; Moro, S. Tetrahedron 1995, 51, 12363.
115Shiraishi, Y.; Hirai, T.; Komasawa, I. Ind. Eng. Chem. Res. 2001, 40, 293.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top