|
[1] Adam Berger. Error-correcting output coding for text classi¯cation. In Proceedings of IJCAI-99 Workshop on Machine Learning for Information Filtering, Stockholm, Sweeden, 1999 [2] Chris H.Q. Ding and Inna Dubchak. Multi-class Protein Fold Recognition Using Support Vector Machines and Neural Networks., Bioinformatics, v.17, no.4, pp.349-358, April 2001 [3] J. C. Platt. Sequential minimal optimization: A fast algorithm for train- ing support vector machines., Technical Report MSR-TR-98-14, Microsfot Research, 1998. [4] J.H. Friedman. Another approach to polychotomous classi¯cation. Tech- nical report, Stanford Department of Statistics, 1996. http://www- stat.standford.edu/reports/friedman/poly.ps.Z. [5] Rayid Ghani. Using error-correcting codes for text classi¯cation. In Pro- ceedings of the Seventeenth International Conference on Machine Learn- ing, 2000. [6] S. Knerr, L. Personnaz, adn G. Dreyfus. Single-layer learning revis- ited: A stepwise procedure for building and training a neural network.. In Forgelman-Soulie and Herault, editors, Neurocomputing: Algorithms, Architectures and Applications, NATO ASI. Springer, 1990. [7] T. G. Dietterich, G. Bakiri. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Arti¯cial Intelligence Research 2 pages 263-286, 1995. [8] V. Vapnik. Statisical Learning Theory. Wiley, New York, NY, 1998. [9] Yuh-Jye Lee, O. L. Mangasarian. SSVM: Smooth Support Vector Ma- chine for Classi¯cation., Data Mining Institute Technical Report 99-03, September 1999. [10] Yuh-Jye Lee and O. L. Mangasarian. RSVM: Reduced Support Vec- tor Machines., First SIAM International Conference on Data Mining, Chicago, April 5-7, 2001 [11] The protein parameter datasets used in this thesis is available online (http://www.nersc.gov/»cding/protein). [12] The Libsvm software we used in this thesis is available at (http://www.csie.ntu.edu.tw/»cjlin/libsvm).
|