(18.232.55.103) 您好!臺灣時間:2021/04/23 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡佳銘
研究生(外文):Chia-Ming Tsai
論文名稱:混合畫框預測小波與H.264編碼法之可調性視訊編碼架構
論文名稱(外文):Scalable Video Coding Using Hybrid Interframe Wavelet/H.264 Architectures
指導教授:林嘉文林嘉文引用關係
指導教授(外文):Chia-Wen Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:45
中文關鍵詞:串流視訊視訊編碼可調性編碼運動補償時軸濾波轉換連續畫面小波視訊轉換
外文關鍵詞:Video streamingVideo codingScalable video codingMCTFInterframe wavelet video coding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
網路多媒體傳輸之目標之一為達成泛用多媒體存取(UMA) 服務,亦即各個用戶可以在不同地點,使用不同之資訊接取設備 (例如:個人電腦、網路電腦、行動電話、無線手持設備及PDA等),經由各種不同之網路平台 (例如:有線及無線區域網路、纜線網路、及電話網路等) 獲取 Content Server 所提供之多媒體資訊。目前MPEG-21希望發展一種高效率之可調性視訊編碼標準(Scalable Video Coding; SVC)以適用於UMA之目標。此種可調性編碼器必須符合高度可調性、錯誤強韌性、基礎層相容性、低傳輸延遲、隨機存取弁遄B良好的編碼效率、支援交織掃描視訊等需求。
在本論文中,我們提出了三種可能的改進架構,這些架構利用H.264編碼基礎層資訊,再把這個基礎層資訊給MCTF-based的編碼器做參考,實驗證實這樣的改善能提升在低位元率時編碼效率不佳的問題。並且我們也研究了在這樣的改進架構下,針對各個不同的MCTF轉換層級間,研究位元率的分配對整體畫質的影響。最後,我們進一步分析造成誤差的原因及整體的誤差模型。
Universal multimedia access (UMA) service is one goal of transmitting multimedia content through networks. With UMA services, clients can access various multimedia contents, which is provided by the content server, through heterogeneous networks (e.g., wired or wireless LAN, cable, or xDSL) with various access devices (such as personal computer, cellular phone, mobile device or PDA) ubiquitously. Currently, MPEG-21 is calling for proposals of highly efficient scalable video coding techniques in order to achieve the goal of UMA [24]. The scalable codecs have to meet the requirements of high degree of scalability in SNR, spatial, temporal, content, etc., error robustness and graceful degradation, base-layer compatibility, low end-to-end transmission delay, random accessibility, efficient compression performance, and support for interlaced video.
In the thesis, we proposed three kinds of improved coding structures by using H.264 codec to produce base layer information, and then give this base layer to be referenced by enhancement layer that produced by MCTF-based SVC codec. From the experimental results, our proposed methods can solve the lack of coding performance at low bit rate. And we also use this improved coding structure to analysis the rate-allocation problem between difference MCTF layers. Finally, we also analysis the cause of distortion and derive the entire coding distortion model.
第一章 簡介..........1
1.1前言..........1
1.2 MPEG-21 SVC目前的發展介紹..........4
1.3 論文大綱..........5
第二章 相關研究回顧..........6
2.1 方法演進..........6
2.2 Barbell lifting 3D wavelet coding..........13
第三章 提出的編碼效能改進方法..........18
3.1由Samsung所提出的MCTF結合H.264編碼架構..........18
3.2由MSRA所提出的MCTF結合H.264編碼架構..........20
3.3提出的改進架構..........21
3.3.1 Scheme 1..........21
3.3.2 Scheme 2..........22
3.3.3 Scheme 3..........23
3.4實驗結果..........24
第四章 MCTF Level間位元率分配的研究..........28
4.1 不同MCTF Level間位元率的分配重新..........28
4.2 造成編碼誤差的原因分析與誤差模型的推導..........36
第五章 結論與未來工作..........41
參考文獻..........42
[1] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming video over the Internet: approaches and directions,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp.282-300, Mar. 2001.
[2] “Applications and requirements for scalable video coding,” ISO/IEC JTC1/SC29/WG11 doc. No. N5540, Pattaya, March 2003.
[3] “Call for evidence on scalable video coding advances,” ISO/IEC JTC1/SC29/WG11 doc. No. N5559, Pattaya, March 2003.
[4] W. Li, “Overview of fine granularity in MPEG-4 video standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp.301-317, Mar. 2001.
[5] M. van der Schaar and H. Radha, “The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp.318-331, Mar. 2001.
[6] M. van der Schaar and H. Radha, “Adaptive motion-compensation fine-granular-scalability (AMC-FGS) for wireless video,” IEEE Trans. Circuits Syst. Video Technol. vol.12, no. 6, pp. 360-371, Jun. 2002.
[7] H.-C. Huang, C.-N. Wang, and T. Chiang, “A robust fine granularity scalability using trellis-based predictive leak,” IEEE Trans. Circuits Syst. Video Technol., pp. 372-385, vol. 12, no. 6, Jun. 2002.
[8] F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol. vol.11, no. 3, pp. 332 -344, Mar. 2001.
[9] S.-T. Hsiang and J. W. Woods, “Embedded video coding using invertible motion compensated 3-D subband/wavelet filter bank”, Signal Processing: Image Comm., vol. 16, pp.705-724, 2001.
[10] S.-T. Hsiang, Highly Salable Subband/Wavelet Image and Video Coding, Ph.D. Dissertation, Rensselaer Polytechnic Institute, Jan. 2002.
[11] P. Chen and J.W. Woods, “Contributions to interframe wavelet and scalable video coding,” ISO/IEC JTC1/SC29/WG11, M9034, Shanghai, October 2002.
[12] “Call for proposal on scalable video coding technology,” ISO/IEC JTC1/SC29/WG11, N6193, Waikoloa, Dec 2003.
[13] “Registered Responses to the Call for Proposals on Scalable Video Coding,” ISO/IEC JTC1/SC29/WG11, M10569, Munich, Mar. 2004.
[14] H. Schwarz, D. Marpe, and T. Wiegand, “Scalable Extension of H.264/AVC,” ISO/IEC JTC1/SC29/WG11, M10569/S03, Munich, Mar. 2004.
[15] ITU-T and ISO/IEC JTC1, “JSVM 0 Software”, JVT-N22, Jan 2005.
[16] ITU-T and ISO/IEC JTC1, “Joint Scalable Video Model JSVM 1,” JVT-N23, Jan 2005.
[17] ITU-T and ISO/IEC JTC1, “Scalable Video Coding - Working Draft 1”, JVT-N020, Jan 2005.
[18] Scalable Extension of H.264/AVC, “http://ip.hhi.de/imagecom_G1/savce/”.
[19] J.-R. Ohm, “Advances in scalable video coding,” Proc. IEEE, vol. 93, no. 1, pp. 42-56, Jan. 2005.
[20] A. Said and W. A. Pearlman, "A new and efficient image codec based on set partitioning in hierarchical trees," IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 243-250, June 1996.
[21] B.-J. Kim, Z.-X. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Trans. Circuits Syst. Video Technol. vol. 10, no. 8, pp. 1374-1387, Dec. 2000.

[22] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of video,” IEEE Trans. Image Processing, vol.3, no.5, pp.572-588, Sept. 1994.
[23] A. Wang, Z. Xiong, P. A. Chou, and S. Mehrotra, “3D wavelet coding of video with global motion compensation,” in Proc. IEEE Data Compression Conf., pp. 404-413, Mar. 1999, Snowbird, UT.
[24] J.-R. Ohm, “Three Dimensional subband coding with motion compensation,” IEEE Trans. Image Processing, vol.3, no.5, pp.559-571, Sept. 1994.
[25] S.-J. Choi and J.W. Woods, “Motion-compensated 3-D subband coding of video,” IEEE Trans. Image Processing, vol. 8, pp. 155-167, Feb. 1999.
[26] L. Luo, F. Wu, S. Li, and Z. Zhuang, “Advanced lifting-based motion-threading (MTh) techniques for 3D wavelet video coding,” in Proc. SPIE Visual Commun. Image Processing, Jul. 2003, Lugano, Switzerland.
[27] L. Luo, F. Wu, S. Li, Z. Zhuang, and Y.-Q. Zhang, “A two-pass optimal motion-threading technique for 3D wavelet video coding,” in Proc. IEEE Int. Symp Circuits Systems, May 2002, Scottsdale, AZ
[28] M. van der Schaar and D. S. Turaga, “Unconstrained motion compensated temporal filtering (UMCTF) framework for wavelet video coding,” IEEE ICASSP 2003, pp. III-621 - III-624, Apr. 2003.
[29] J. C. Ye and M. van der Schaar, “3-D lifting structure for sub-pixel accuracy motion compensated temporal filtering in overcomplete wavelet domain”, ISO/IEC JTC1/SC29/WG11, m9554, MPEG 64th meeting, Pattaya, Thailand, Mar. 2003.
[30] J. W. Woods, P. Chen, and S.-T. Hsiang, “Exploration experimental results and software”, ISO/IEC JTC1/SC29/WG11, M8524, Klagenfurt, July 2002.
[31] G. Pau, C. Tillier, B. Pesquet-Popescu, and H. Heijmans, “Iterative predict optimization in MCTF video,” ISO/IEC JTC1/SC29/WG11, M9929, Trondheim, Norway, July 2003.
[32] T. Kimoto and Y. Miyamoto, “Multi-resolution MCTF for 3D wavelet transformation in highly scalable video,” ISO/IEC JTC1/SC29/WG11, M9770, Trondheim, Norway, July 2003.
[33] L. M. Huang, S. S. Mei, and Y. Honda, “Results on scalable video coding in low delay mode,” ISO/IEC JTC1/SC29/WG11, M9843, Trondheim, Norway, July 2003.
[34] H.-M. Hang, S. S. Tsai, and T. Chiang, “Motion information scalability for MC-EZBC,” ISO/IEC JTC1/SC29/WG11, M9756, Trondheim, Norway, July 2003.
[35] J. Xu, et al, "3D Sub-band Video Coding using Barbell lifting," ISO/IEC JTC1/SC29/WG11, M10569/S05, Munich, March 2004.
[36] R. Xiong, F. Wu, J. Xu, S. Li, and Y.-Q. Zhang, “Barbell lifting wavelet transform for highly scalable video coding,” in Proc. Picture Coding Symp. special session on advances in MCTF/Wavelet, CA, 2004.
[37] L. Luo, et al, “Advanced lifting-based motion threading technique for 3D wavelet video coding,” in Proc. SPIE VCIP 2003, vol.5150, pp.707-718, Jul.2003.
[38] R. Xiong, et al, “Exploiting temporal correlation with block-size adaptive motion alignment for 3D wavelet coding,” in Proc. SPIE VCIP 2004, San Jose, California, USA, Jan.2004.
[39] K. Hanke, “RD Performance of Fully Scalable MC-EZBC (Results of EE1),” ISO/IEC/JTC1 SC29/WG11, M9000, Shanghai, October 2002.
[40] A. Munteanu, Y. Andreopoulos, M. van der Schaar, P. Schlkens, and J. Cornelis, “Control of the distortion variation in video coding systems based on motion compensated temporal filtering,” in Proc. IEEE Int. Conf. Image Processing, Sept. 2003, Barcelona, Spain.
[41] “Description of Core Experiments in SVC,” ISO/IEC JTC1/SC29/WG11, N6373, Munich, March 2004.
[42] Woo-Jin and Ho-Jin Ha, “Responses of CE1d: base-layer,” ISO/IEC JTC1/SC29/ WG11, M11055, Redmond, July 2004.
[43] X. Ji, J. Xu, D. Zhao, and F, Wu, “Responses of CE1d: base-layer,” ISO/IEC JTC1/SC29/ WG11, M11127, Redmond, July 2004.
[44] JVT Reference Software, JM76, “http://bs.hhi.de/~suehring/tml/download/”.
[45] Y.Shoham and A.Gersho, "Efficient bit allocation for an arbitrary set of quantizers," IEEE Trans. Acoustics Speech Signal Process, vol.36, pp.1445-1453, September 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周淑娟(1998)。談同儕關係研究的另類思考。教育資料文摘,41(6),188-192。
2. 周淑娟(1998)。談同儕關係研究的另類思考。教育資料文摘,41(6),188-192。
3. 周淑娟(1998)。談同儕關係研究的另類思考。教育資料文摘,41(6),188-192。
4. 王柏壽(2004)。班級裡的人際關係。教師之友,35(2),15-24。
5. 王柏壽(2004)。班級裡的人際關係。教師之友,35(2),15-24。
6. 王柏壽(2004)。班級裡的人際關係。教師之友,35(2),15-24。
7. 王春展(1998)。兒童情緒智力發展的影響因素與因應對策。教育資料文摘,41(5),164-187。
8. 王春展(1998)。兒童情緒智力發展的影響因素與因應對策。教育資料文摘,41(5),164-187。
9. 王春展(1998)。兒童情緒智力發展的影響因素與因應對策。教育資料文摘,41(5),164-187。
10. 張高賓(2001)。單親兒童父母教養方式、家庭環境與情緒穩定之關係研究。屏東師院學報,14,465-504。
11. 張高賓(2001)。單親兒童父母教養方式、家庭環境與情緒穩定之關係研究。屏東師院學報,14,465-504。
12. 張高賓(2001)。單親兒童父母教養方式、家庭環境與情緒穩定之關係研究。屏東師院學報,14,465-504。
13. 許芳菊(2005)。培養孩子面對未來的關鍵能力。天下雜誌,335,206-207。
14. 許芳菊(2005)。培養孩子面對未來的關鍵能力。天下雜誌,335,206-207。
15. 許芳菊(2005)。培養孩子面對未來的關鍵能力。天下雜誌,335,206-207。
 
系統版面圖檔 系統版面圖檔