跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅遠廷
研究生(外文):Yuan-Ting Fu
論文名稱:高速度低必v多重資料流乘法器
論文名稱(外文):High-Speed and Low-Power SIMD Multipliers
指導教授:葉經緯
指導教授(外文):Ching-Wei Yeh
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:93
語文別:中文
論文頁數:98
中文關鍵詞:低必v多重資料流乘法器
外文關鍵詞:SIMD MultipliersLow-Power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在高效能的處理器中乘法器佔有最長的運算時間及大量的使用次數,所以對乘法器而言,低必v及高速度的要求變得十分重要,且因多媒體運算的需求,乘法器常需支援多重資料流的模式,也就是SIMD(Single Instruction Multi Data),本論文即針對SIMD乘法器的各種需求,提出了釵h項新穎的設計,並整合成IC下線。Post layout simulation數據顯示,我們的設計,速度較所參考的文獻快了約30%,繞線面積減少約22%,必v消耗最多可以改善約30%。
Among high performance processors, it is multiplier which needs the longer operation time and which is used with high frequency. Therefore, for multiplier, low power and high speed are of importance. Also, due to the needs of the multi-media operation, multiplier needs Single Instruction Multi Data mode, that is, SIMD mode. This essay aims at providing many novel designs to meet the various needs of SIMD multiplier, and these designs are integrated into IC type-out. According to Post layout simulation, compared with those references it shows that my design is faster in speed about 30%, is less in routed area about 22, and is lower in power dissipation about 30%.
第一章
1-1研究動機
1-2論文章節安排
第二章
2-1相關研究發展現況
2-2疊接結構SIMD乘法器 (Bottom Up SIMD Multiplier)
2-3陣列式SIMD乘法器【2】
2-3.1陣列式結構的無號運算
2-3.2陣列式結構的有號無號運算
2-3.3 陣列式乘法器支援2組無號SIMD運算
2-3.4 陣列式乘法器支援4組或2組有號無號SIMD運算
2-4 Shared Subtree SIMD乘法器
2-4.1部份乘積產生
2-4.2 Partial Product Reduction Tree
2-5 結合Modified Booth與Wallace tree之SIMD乘法器【3】
2-5.1 支援SIMD的Modified Booth Multiplier
2-5.2 Booth Encoder因應無號數的修正
2-5.3 Booth selector(Booth Decoder)因應無號數的修正
2-5.4 符號延伸與內部清除為零
2-5.5 SIMD Multiplier內部必須清除的Carry-out
2-5.6 Carry kill Final adder
第三章
3-1 SIMD乘法器簡介 3
3-2 考量硬體內部之面積及速度設計法
3-2.1 High-Speed Modified Booth
3-3 SIMD multiplier之硬體共用改造
3-3.1 切割乘數使Booth運算支援SIMD
3-3.2 支援無號數所增加的Booth Encoder硬體化簡
3-3.3支援無號數所增加的Booth Decoder(Booth Selector)
3-3.4支援SIMD運算的符號延伸
3-3.5 Signed Generate內部邏輯共用的實現
3-3.6 內部反向加一之解決
3-3.7 支援SIMD切換內部必須清除為零
3-3.8支援SIMD切換內部加法器Carry-out必須清除為零
3-3.9 總整理
3-4 Modified Booth搭配陣列結構加法器(Carry-save addition)
3-4.1 Modified Booth搭配陣列結構在必v消耗的改良
3-5 Modified Booth搭配Wallace tree 架構
第四章
4-1 效能比較與分析
4-2 Verilog 設計與驗證
4-3 Synopsys軟體合成數據分析
4-4 Pre-Sim Timing 數據分析
4-4.1 Pre-sim 波型驗證
4-5 繞線後的面積比較
4-6 Post- layout simulation Timing
4-7 Post layout simulation速度分析比較
4-8 Post layout Simulation 必v消耗分析
4-8.1 我們的設計與reference design的必v消耗分析
4-8.2 Post-Sim Power Report without Wallace tree
4-8.3 Modified Booth演算法搭配上陣列結構加法必v消耗分析
4-9 Post-Simulaition Transistor Count report
第五章
參考文獻
附 錄
1.SIMD multiplier 下線接腳規劃
2.下線接腳圖
3.PIN assignment
【1】 A.A. Farooqui and V.G. Oklobdzija, “General Data-Path Organization of a MAC Unit for VLSI Implementation of DSP Processors,” in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 2, no. 6, pp. 260-263, May 1998.
【2】 S. Krithivasan and M.J. Schulte, “Multiplier Architectures for Media Processing,” Proc. 37th Asilomar Conf. Signals, Systems and Computers, vol. 2, pp. 2193-2197, Nov. 2003.
【3】A. Danysh and D. Tan, “Architecture and Implementation of a
Vector/SIMD Multiply-Accumulate Unit,” IEEE Transactions on Computers, vol. 54, no. 3, pp. 12-19, March 2005.
【4】M.S. Schmookler et al., “A Low-Power, High-Speed Implementation of a PowerPC Microprocessor Vector Extension,” Proc. 14th IEEE Symp. Computer Arithmetic, pp. 12-19, 1999.
【5】B. Parhami, “Computer Arithmetic-Algorithms and Hardware Designs,” pp. 178-180, 191-195, 2000.
【6】W.F. Wong and E. Goto, “Division and Square-Rooting Using A Split Multiplier,” Electric Letters, vol. 28, no. 18, pp. 1758-1759, Aug. 1992.
【7】Y. Liao and D.B. Roberts, “A High-Performance and Low-Power 32-Bit Multiply-Accumulate Unit with Single-Instruction-Multiple-Data (SIMD) Feature,” IEEE J. Solid-State Ciruits, vol. 37, no. 7, July 2002.
【8】H. Lee et al., “Virtual Parallel Multiplier-Accumulator,” US Patent 6, 622, 153, 16 Sept. 2003.
【9】A.N. Danysh and E.E. Swartzlander Jr.,“A Recursive Fast Multiplier,” Proc. 32nd Asilomar Conf. Signals, Systems, and Computers, vol. 1, pp. 197-201, Nov. 1998.
【10】王進賢, VLSI電路設計, 高立圖書有限公司, 1991,ISBN 957-584-819-5
【11】R. J. Baker, H.W. Li, and D.E. Boyce, CMOS Circuit Design, Layout, and Simulation, 1998, IEEE Press Series. ISBN 0-7803-3416-7.
【12】D. Tan, A. Danysh, and M. Liebelt, ” Multiple-Precision Fixed-Point Vector Multiply Accumulator using Shared Segmentation,” Proc. 16th IEEE Symposium on Computer Arithmetic, pp. 12-19, June 2003.
【13】L. Ying and C. Jie, ”A reconfigurable architecture of a high performance 32-bit
MAC unit for embedded DSP,” Proc. 5th International Conference on ASIC,
vol. 2, pp.1285-1288, Oct. 2003.
【14】V.G. Oklobdzija, D. Villeger, and S.S. Liu, “A Method for Speed Optimized Partial Product Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach,” IEEE Transactions on Computers, vol. 45, no. 3, March 1996.
【15】A.A. Fayed, and M.A. Bayoumi, “A merged multiplier-accumulator for high speed signal processing applications,” Proc. (ICASSP '02). IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp13-17, May 2002.
【16】L.H. Chen, W.L. Liu, O.T.-C. Chen and R.L. Ma, “A reconfigurable digital signal processor architecture for high-efficiency MPEG-4 video encoding,” Proc. IEEE International Conference on Multimedia and Expo, vol. 2, pp. 165-168, Aug. 2002.
【17】J. Grossschadl and G.-A. Kamendje, ”A single-cycle (32×32+32+64)-bit multiply/accumulate unit for digital signal processing and public-key cryptography,” Proc. 10th IEEE International Conference on, Electronics, Circuits and Systems, vol. 2, pp. 739-742, Dec. 2003.
【18】 I.S. Abu-Khater, A. Bellaouar, and M.I. Elmasry, ” Circuit techniques for CMOS low-power high-performance multipliers,” IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 1535-1546, Oct. 1996.
【19】W.C. Yeh, and C.W. Jen, ”High-speed Booth encoded parallel multiplier design,” IEEE Transactions on Computers, vol. 49, no. 7, pp. 692-701, July 2000.
【20】R. Fried, ”Minimizing energy dissipation in high-speed multipliers,” Proc. International Symposium on Low Power Electronics and Design, pp. 214-219, Aug 1997.
【21】E. Costa, S. Bampi, and J. Monteiro, ”A new architecture for 2's complement Gray encoded array multiplier,” Proc. 15th Symposium on Integrated Circuits and Systems Design, pp. 14-19, Sept. 2002.
【22】 J.Y. Kang and J.-L. Gaudiot, ”A fast and well-structured multiplier,” DSD 2004. Euromicro Symposium on Digital System Design, pp. 508-515, Sept. 2004.
【23】N. Tang, J.H. Jiang, and K. Lin, ”A high-performance 32-bit parallel multiplier using modified Booth's algorithm and sign-deduction algorithm,” Proc. 5th International Conference on ASIC, vol. 2, pp. 1281-1284, Oct. 2003.
【24】P. Mokrian, M. Ahmadi, G.Jullien, and W.C. Miller, ”A reconfigurable digital multiplier architecture,” IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 125-128, May 2003.
【25】K.H. Lee, and C.S. Rim, ”A hardware reduced multiplier for low power design,” in Proceedings of the Second IEEE Asia Pacific Conference on ASICs, pp. 331-334, Aug. 2000.
【26】H.Y. Lo, “A high-speed two's complement bit-sequential multiplier,” Proc. IEEE Region 10's Ninth Annual International Conference on Computer Technology, vol. 2, pp. 1040-1048, Aug. 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文