|
[1]Kuang-Wei Cheng, “A 1.0-V, 10-Bit CMOS Pipelined Analog-to-Digital Converter”, M.S. thesis, National Taiwan University, Jan. 2002. [2]Chih-Min Liu, “8-bit, High Conversion Rate Pipelined ADC with Improved Capacitors”, M.S. thesis, National Taiwan University, Jan. 2002. [3]Shiau-Wen Kas, “Low Voltage(1.5V) 8bit-50MS/s Analog-to-Digital Converter on 0.35um 1P4M CMOS Technology”, M.S. thesis, National Tsing Hua University, Jan. 2002. [4]“Design of a Pipelined Analog to Digital Converter for IEEE 802.11a WLAN”, M.S. thesis, Chung Hua University, July 2004. [5]Jason Hsieh, “Nyquist-Rate A/D Converter Design”, Chip Implementation Center, July 2003. [6]George Chien, “High-Speed, Low-Power, Low Voltage Pipelined Analog-to-Digital Converter”, M.S. thesis, University of California at Berkeley, May 1996. [7]T. Cho, "Low-Power Low-Voltage Analog-to-Digital Conversion Techniques using Pipelined Architecures" PhD Thesis, University of California, Berkeley, 1995. [8]David A. Johns and Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, Inc., 1997. [9]Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill Companies, Inc., 2002. [10]Mikko E. Waltari and Kari A.I. Halonen, “Circuit Techniques for Low-Voltage and High-Speed A/D Converters”, Kluwer Academic Publishers, 2002. [11]R. Jacob Baker, “CMOS Circuit Design, Layout, and Simulation”, John Wiley & Sons, Inc., 2005. [12]M. Bruns and G.W. Roberts, “An Introduction to Mixed-Signal IC Test and Measurement”, Oxford Unversity Press, New York, 2001. [13]Bernhard E. Boser, EECS 247 Lecture, University of California at Berkeley. [14]Boris Murmann, EE315 Lecture, Stanford University. [15]Yang, D.X.D.; Gamal, A.E.; Fowler, B.; Tian, H, “A 640×512 CMOS image sensor with ultrawide dynamic range floating-point pixel-level ADC”, IEEE J. Solid-State Circuits, Vol. 34, No.12, pp. 1821- 1834, Dec. 1999 [16]Lewis, S.H.; Fetterman, H.S.; Gross, G.F., Jr.; Ramachandran, R.; Viswanathan, T.R., “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, Vol. 27, pp. 351 – 358, March 1992. [17]Gothenberg, A.; Tenhunen, H, “Performance analysis of sampling switches in voltage and frequency domains using Volterra series,” ISCAS '04, Vol. 1, May 2004 , pp.I - 765-8. [18]Dessouky, M.; Kaiser, A., “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE J. Solid-State Circuits, Vol. 36, pp. 349 – 355, March 2001. [19]Lotfi, R.; Taherzadeh-Sani, M.; Azizi, M.Y.; Shoaei, O., ”A low-power design methodology for high-resolution pipelined analog-to-digital converters,” ISLPED '03, Aug. 2003, pp.334 – 339. [20]Shinagawa, M.; Akazawa, Y.; Wakimoto, T., “Jitter analysis of high-speed sampling systems,” IEEE J. Solid-State Circuits, Vol. 25, pp. 220 – 224, Feb. 1990. [21]Bult, K.; Geelen, G.J.G.M., “A fast-settling CMOS op amp for SC circuits with 90-dB DC gain,” IEEE J. Solid-State Circuits, Vol. 25, pp. 1379 – 1384, Dec. 1990. [22]Hosticka, B.J., “Improvement of the gain of MOS amplifiers,” IEEE J. Solid-State Circuits, Vol. 14, pp. 1111 - 111, Dec. 1979. [23]Sackinger, E.; Guggenbuhl, W., “A high-swing, high-impedance MOS cascode circuit,” IEEE J. Solid-State Circuits, Vol. 25, pp. 289 - 298, Feb. 1990. [24]Gatti, U.; Maloberti, F.; Torelli, G., “A novel CMOS linear transconductance cell for continuous-time filters,”, 1990., IEEE International Symposium on Circuits and Systems, vol.2, pp. 1173 – 1176, May 1990. [25]Crawley, P.J.; Roberts, G.W., “Designing operational transconductance amplifiers for low voltage operation,” ISCAS '93, vol. 2, May 1993, pp. 1455 – 1458. [26]Lewis, S.H.; Gray, P.R., “ A pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE J. Solid-State Circuits, Vol. 22, pp. 954 – 961, Dec. 1987. [27]Cho, T.B. and Gray, P.R. , “A 10 b, 20 Msample/s, 35 mW pipeline A/D converter,” IEEE J. Solid-State Circuits, Vol. 30, pp. 166–172, March 1995. [28]Yu, P.C.; Hae-Seung Lee, “A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, Vol.31, pp.1854–1861, Dec. 1996. [29]Nagaraj, K.; Fetterman, H.S.; Anidjar, J.; Lewis, S.H.; Renninger, R.G., “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers ,” IEEE J. Solid-State Circuits, Vol.32, pp. 312 - 320 , March 1997. [30]Byung-Moo Min; Kim, P.; Bowman, F.W., III; Boisvert, D.M.; Aude, A.J., “A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, Vol. 38, pp. 2031 – 2039, Dec 2003. [31]H. Walden, "Analog-to-digital converter survey and analysis," IEEE Journal on Selected Areas in Communications, April 1999. [32]Beck, D.R.; Allstot, D.J.; Garrity, D. ,”An 8-bit, 1.8 V, 20 MSample/s analog-to-digital converter using low gain opamps,” ISCAS Circuits and Systems, May 2003, pp.I-853 - I-856. [33]Tae-Hwan Oh; Ho-Young Lee; Ho-Jin Park; Jae-Whui Kim, “A 1.8V 8-bit 250Msample/s Nyquist-rate CMOS pipelined ADC,” ISCAS Circuits and Systems, May 2004, pp. I-9 - I-12. [34]Ja-Hyun Koo; Yun-Jeong Kim; Sin-Hu Kim; Won-Joo Yun; Shin-Il Lim; Suki Kim, “An 8-bit 250MSPS CMOS pipelined ADC using open-loop architecture, ” Proceedings of 2004 IEEE Asia-Pacific Conference on 4-5, Aug. 2004, pp.94 – 97. [35]Data sheet of “AD8138AR, low distortion differential ADC driver,” Analog Device Inc., 2001.
|