(100.26.179.251) 您好!臺灣時間:2021/04/12 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:程勇昇
研究生(外文):Yong-Sheng Cheng
論文名稱:超寬頻通訊系統內降低複雜度的多用戶偵測演算法
論文名稱(外文):Reduced-omplexity Multiuser Detection in Ultra-Wideband Communication
指導教授:胡家彰
指導教授(外文):Chia-Chang Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:93
語文別:中文
論文頁數:72
中文關鍵詞:判斷回授共軛梯度多層韋氏濾波器超寬頻系統
外文關鍵詞:Ultra-WidebandMultistage Wiener FilterConjugate GradientDecision-Feedback detector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:615
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在超寬頻(Ultra-Wideband, UWB)通訊系統中,多重存取干擾(multiple access interference, MAI)是造成效能降低的主要因素。而傳統的多用戶偵測方法雖然可以有效的降低干擾而達到很好的效能,但卻都有計算雜度過高的缺點。所以本論文利用多用戶多層韋氏濾波器(multiuser multistage Wiener filter, MMWF)與多用戶共軛梯度演算法(multiuser conjugate gradient,M- CG)來改善複雜度高的缺點而且效能卻可以相似於傳統偵測方法。前一種方法是利用多層分解來簡化計算量;後一種方式則是利用迴圈的搜尋來找最佳的濾波器權重向量,而避免掉反矩陣的運算。
第四章則是在最小平方根誤差(MMSE)濾波器或多用戶多層韋氏濾波器的解調處理基礎上再加入判斷回授判別(decision-feedback detector, DFD)處理的架構,此種方式更可進一步的增進偵測的效能,而且複雜度因為可以共用部份的資料量,所以並不會增加太多。
最後則利用電腦來模擬出上列所介紹的各種架構,並在超寬頻通訊系統內各種不同調變方式上作比較。
In the Ultra-Wideband (UWB) communication system, multiple access interference (MAI) is the main point to affect the performance of the bit error rate (BER). One of the traditional methods for the multiuser detection is the minimum mean square error (MMSE). It can efficiently decrease the MAI to gain the better performance, but it needs to calculate the matrix inverse. This calculation is too complex, so the method is not practice in the real-time system. Therefore, we take the two methods to improve the disadvantage, one is the multiuser multistage Wiener filter (MMWF) and the other is conjugate gradient (CG). The former uses the method decomposing the calculation of the matrix inverse to decrease the complex. And the latter is searching all the directions to find the optimum weight vector of the filter to avoid the calculation of the matrix inverse. Then, the performances of the two methods are almost equal to it of the MMSE, but the complex of the two methods is less than that of the MMSE.
In Chapter 4, we will introduce the algorithm of the decision-feedback detection (DFD). This method is based on the MMSE or the MMWF and it can gain the better performance. Besides, its complex will not increase too much, because it can share the calculation results of the MMWF.
Finally, we will simulate all the frameworks we introduced above in the computer. And we also simulate the results with two different spreading spectrum methods of UWB system in all kinds of the detecting filters.
摘要…………………………………………………………………………………..Ⅰ
Abstract............................................................Ⅱ
目錄…………………………………………………………………………………..Ⅲ
圖目錄………………………………………………………………………………..Ⅳ
表目錄………………………………………………………………………………..Ⅴ

第一章 導論
1.1 前言……………………………………………………………………1
1.2 研究動機………………………………………………………………2
1.3 論文架構………………………………………………………………3

第二章 超寬頻通訊傳輸系統...............................................................4
2.1 超寬頻(UWB)通訊系統概念介紹…………………………………..4
2.2 系統模型………………………………………………………...…….6
2.2.1 TH-PPM UWB調變系統…………………………………...9
2.2.2 DS-UWB調變系統……………………………………….12
2.3 傳統偵測器與韋氏(Wiener)濾波器……………………….……….13
2.3.1 傳統偵測器……………………………………………..13
2.3.2 韋氏(Wiener)濾波器…………………………………..15

第三章 多層韋氏濾波器……………………………………………………..……20
3.1 降階信號處理…………………………………………………….….20
3.2 多層Wiener濾波器…………………………………………...…….23
3.2.1 等效Wiener濾波器模型…………………………..…..24
3.2.2 多層Wiener濾波器之表示方法…………………...….26

第四章 多用戶判斷回授判別接收器……………………………………………..32
4.1 架構分析……………………………………………………………..32
4.2 多層韋氏濾波器與多用戶判斷回受判別接收器的應用……….….39

第五章 共軛梯度(Conjugate Gradient)接收器………………………..……43
5.1 下傾坡度(Steepest Descent)……………………………..………43
5.2 共軛梯度(Conjugate Gradient)演算法……………….……….45

第六章 電腦模擬與分析……………………………………………………..……53
6.1 跳時展頻超寬頻通訊系統的效能………………….……………….53
6.2 直接序列超寬頻系統………………………………………..………56
6.3 跳時展頻方式與直接序列展頻方式的比較………………………..59

第七章 結論與展望………………………………………………….…………….61

參考文獻
參考文獻

[1]S. Verdu, “Minimum probability of error for asynchronous Gaussian multiple-access channels,” IEEE Trans. Inform. Theory, vol. 32, pp. 85-96, Jan. 1986
[2]R. Lupas and S. Verdu, “Linear multiuser detectors for synchronous code-division on multiple-access channels,” IEEE Trans. Inform. Theory, vol. 35, pp. 123-136, Jan. 1989.
[3]Z. Xie, R. T. Short, and C.K. Rushforth, “A family of suboptimum detectors for coherent multiuser communications,” IEEE J. Select. Areas Commun., vol. 8,pp. 683-690, May. 1990
[4]J. S. Goldstein, I. S. Reed, and L.L.Scharf, “A multistage representation of the Wiener filter based on orthogonal projections,” IEEE Trans. Inform. Theory, vol. 44, pp. 2943-2959, Nov. 1998
[5]P. Thanyasrisung, I. S. Reed, and X. Yu, “Reduced-rank MMSE receiver for synchronous CDMA,” in Proc. MILCOM, IEEE, vol. 2, pp. 569-573, Oct. 2000
[6]C. Fowler, J. Entzminger, and J. Vorum, “Report: Assessment of Ultra-Wideband (UWB) Technology,” OSD/DARPA Ultra-Wideband Radar Review Panel, R-6280, 1990
[7]FCC, “Revision of Part 15 of the Commision’s Rules Regarding Ultra-Wideband Transmission System,” First Report and Order, ET Docket pp. 98-153, Feb. 2002
[8]Gian Mario Maggio “An introduction to UWB,” CWC/UCSD & STMicroelectronics, December 2002
[9]Moe Z. Win, R. A. Scholtz, “Impulse Radio: How It Works,” IEEE Communications letters, vol. 2, No. 2, Feb. 1998
[10]S. Lee, Design and Analysis of Ultra-wide Bandwidth Impulse Radio Receiver, Ph.D. These, Department of Electrical Engineering, University of Southern California, August 2002
[11]Z. Fang, W. Zhiqiang, C.R. Nassar, “Generalized fading channel model with application to UWB,” Ultra Wideband Systems and Technologies, 2002. IEEE Conf. on 21-23, pp. 13-17, May 2002.
[12]A. Saleh, R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Select. Areas Commun., vol. 5, Issue 2, pp. 128-137, Feb. 1987
[13]S. Haykin, Adaptive Filter Theory, Fourth ed., Upper Saddle River, NJ: Prenticel-Hall, 2002
[14]J. S. Goldstein, Optimal Reduced-Rank Statistical Signal Processing: Detection and Estimation Theory. PhD thesis, Dept. of Electrical Engineering, University of Southern California, Los Angeles, Dec. 1997
[15]M. L. Hoing and W. Xiao, “Performance of reduced-rank linear interference suppression,” IEEE Trans. Inform. Theory, vol. 47, pp. 1928-1946, July 2001
[16]M. L. Hoing and J. S. Goldstein, “Adaptive reduced-rank interference suppression based on the multistage Wiener filter,” IEEE Trans. Commun. Vol. 50, pp. 986-994, June 2002
[17]L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis. Reading, MA: Addison-Wesley, 1991
[18]C. C. Hu and I. S. Reed, “Space-time adaptive reduced-rank multistage Wiener filtering for asynchronous DS-CDMA,” IEEE Trans. On Signal Processing, vol. 52, pp. 1862-1877, July 2004
[19]G. H. Golub and C. F. Van Lon, Matrix computations, Third ed. Baltimore, MD: Johns Hopkins Univ. Press, 1996
[20]Y. H. Chang and X. Yu, “A reduce-rank MMSE-DFE receiver for Space-Time Code DS-CDMA Systems,” IEEE Trans. Inform. Theory, vol. 5, pp. 3659-3663 Sept. 2004
[21]P. B. Rapajic and B. S. Vucetic, “Adaptive receiver structures for asynchronous CDMA systems,” IEEE J. Select. Areas Commun., vol. 12, pp. 685-697, May 1994
[22]U. Madhow and M. L. Honig, “MMSE interference suppression for direct-sequence spread spectrum CDMA,” IEEE Trans. Commun., vol. 42, pp. 3178-3188, Dec. 1994
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔