跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:凃亮兆
研究生(外文):Leon Tu
論文名稱:自動移動式節點植怖與電源管理應用於無線感測網路系統
論文名稱(外文):Automatic Mobile Nodes Deployment and Power Management for Wireless Sensor Networks
指導教授:羅仁權羅仁權引用關係
指導教授(外文):Ren C. Luo
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:87
中文關鍵詞:移動式節點電源管理節點植怖感測器網路
外文關鍵詞:sensor networksauto-deploymentpower managementmobile sensor node
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
無線感測網路是未來國際發展趨勢,也是目前各國學術研究單位爭相投入的熱門題目。顧名思義,感測器網路就是由釵h感測器節點所構成,彼此間以網路通訊來進行溝通,將所得到的資料整合起來。無線感測網路可涵括多元化的偵測應用,包括:醫療照護、軍事、環境監控、交通控制、工廠管理等等。無線感測器網路的特色包括高彈性、錯誤容忍、高感測精確度、低成本與快速佈植。利用分散式資料融合技術,可以提高資訊的正確性,刪除不正確、誇張的錯誤訊息。

節點有處理、傳輸、與接收資料的能力,其上配有感測元件監控環境,包括溫度、壓力、振動、音波、及化學氣體,能自主的監控與處理大範圍的環境變化。每個感測器節點須有省電、低成本而且小的特性。基於成本和節能的觀點,一般節點並沒有被賦予移動的弁遄A大大的限制了它的方便性。

本論文闡述移動式節點的好處,設計與實作出一個移動式感測器節點;並發展出一套節點自動值佈的演算法,利用移動節點來實現這個演算法,以期快速提升系統的感測涵遢d圍及節點分布的平均。此外,我們設計一套電源管理方法,考慮事件發生機率、節點電池狀態、感測範圍、網路通訊情況下,動態調配節點的睡眠狀態,在不影響監測品質的情況下,延長系統的運作時間。從模擬結果來看,這兩個演算法都可以達成很好的性能響應。
Wireless sensor network is the emerging technology, and many academic units and research centers devote a lot to this issue. As the name, sensor network is composed by many sensor nodes. The sensor communicates with others through the network, and the data of each node would be integrated. It could be applied in medical care, military, environmental monitoring, traffic control, industry and so on. Here are some features of this technology: high flexibility, fault tolerance, high precision, low production costs, and scalability. By using distributed data fusion, the environmental information could be more correct.

Sensor nodes are capable of detecting, communication, and processing data. The sensing unit can detect the temperature, pressure, vibration, sound or chemical vapor autonomously. Each sensor node has the characteristics of few energy consumption, low cost, and small size. A common design of sensor nodes lacks of mobility due to the high cost and energy consumption, but it limits the applications drastically.

In this thesis, some advantages of mobile nodes are listed, and an implement is demonstrated. An auto-deployment method is proposed here to raise system coverage and uniformity rapidly and realized with this mobile node. Besides, we present a dynamic power management policy. The sleeping period of each node is determined adaptively by considering with event generation, battery status, coverage problems and communication situations. It prolongs the system life time without influencing the quality of surveillance. From the simulation results, both algorithms could achieve pretty good performances.
誌 謝 i
中 文 摘 要 ii
Abstract iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 About Sensor Networks 1
1.1.1 Applications of Sensor Network 5
1.1.2 Major Issues and Challenges 7
1.1.3 Usage of Mobile Nodes 10
1.2 Motivation and Objectives 13
1.3 Thesis Organization 14
Chapter 2 Literature Review 15
2.1 An Overview of Other Mobile Nodes 15
2.1.1 CotsBots 16
2.1.2 MICAbot 19
2.1.3 Robomote 23
2.2 Related Works about Auto-Deployment Policy 26
2.3 Brief Reviews of Power Management Methods 30
Chapter 3 Design and Implementation of a Mobile Node 34
3.1 Introduction 34
3.2 Hardware Configuration 36
3.2.1 Top Layer 37
3.2.2 Middle Layer 39
3.2.3 Bottom Layer 40
3.2.3 Power Unit 42
3.3 Software Architecture 43
3.4 Comparison 46
Chapter 4 Auto-Deploymet Policy: Grid Method 48
4.1 Framework Statements 49
4.2 Grid Method 52
4.2.1 Pre-Deployed Node Effect 52
4.2.2 Boundary Effect 53
4.2.3 Obstacle Effect 54
4.2.3 Hot Zone Effect 54
4.3 Simulation Result and Analysis 57
Chapter 5 Dynamic Power Management Algorithm 64
5.1 Problem Statements 65
5.2 System Model 66
5.2.1 Sleep State Model 66
5.2.2 Event Generation Model 67
5.2.3 Coverage Model 68
5.3 Dynamic Power Management Algorithm 71
5.3.1 Sleeping Policy 71
5.3.2 Awakening Policy 73
5.4 Simulation Results and Analysis 76
5.4.1 The Deepest Sleep State 76
5.4.2 The Shallower Sleep States 80
Chapter 6 Conclusion 82
References 84
List of Publications 87
[1]C. Y. Chong, and S. P. Kumar, “Sensor networks: evolution, opportunities, and challenges,” Proceedings of the IEEE, vol. 91, Issue 8, pp. 1247 – 1256, Aug. 2003.
[2]http://techdigest.jhuapl.edu/td1604/APLteam.pdf
[3]http://zdnet.com.com/2100-1105-976377.html
[4]http://www.llnl.gov/str/JulAug01/Hills.html
[5]B. Schlender, “Intel’s Andy Grove: The Next Battles in Tech,” Fortune, pp. 80-81, 12 May 2003.
[6]H. Qi, S. S. Iyengar, and K. Chakrabarty, “Multi-resolution data integration using mobile agents in distributed sensor networks,” IEEE Trans. Syst., Man, Cybern. C, vol. 31, pp. 383–391, Aug. 2001.
[7]K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G. Sukhatme, “Robomote: Enabling Mobility In Sensor Networks,” ACM Journal Name, vol. 1, pp. 1-21, 2004.
[8]P. W. Cheng, “Design and Implementation of a Smart Mobile Sensor Node”, Master Thesis, National Central University, Taiwan, July, 2004.
[9]M, Rahimi, H. Shah, G. S. Sukhatme, J. Heideman, and D. Estrin, ”Studying the feasibility of energy harvesting in a mobile sensor network,” International Conference on Robotics and Automation 2003, vol. 1, pp. 19 – 24, 14-19 Sept. 2003.
[10]http://www.kteam.com/robots/khepera/
[11]http://www.activrobots.com/ROBOTS/p2dx.html
[12]A. Birk, S. Coradeschi, and S. Tadokoro, RoboCup 2001: Robot Soccer World Cup V. Springer: Berlin, 2002.
[13]S. Bergbreiter, and K. S. J. Pister, “CotsBots: an off-the-shelf platform for distributed robotics,” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003), vol. 2, pp. 1632-1637, 27-31 Oct. 2003.
[14]G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks.” IEEE International Conference on Robotics and Automation 2000 (ICRA 2000), vol. 2, pp.1143-1148, 2000.
[15]M. B. McMickell, B. Goodwine, and L. A. Montestruque, “MICAbot: A Robotic Platform for Large-Scale Distributed Robotics,” IEEE International Conference on Robotics and Automation (ICRA '03), vol. 2, pp. 1600-1605, 14-19 Sept. 2003.
[16]K. Dantu, M. H. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G. S. Sukhatme, "Robomote: Enabling mobility in sensor networks,” To appear as a poster paper in International Conference on Information Processing in Sensor Networks, Apr 2005.
[17]P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. “Deployment and Connectivity Repair of a Sensor Net with a Flying Robot,” ISER 2004, 2004.
[18]K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Coding theory framework for target location in distributed sensor networks,” Information Technology: Coding and Computing, 2001, pp.:130 - 134, 2-4 April 2001.
[19]N. Heo, and P. K. Varshney, ”Energy-efficient deployment of Intelligent Mobile sensor networks,” IEEE Transactions on Systems, Man and Cybernetics, vol. 35, pp.78 – 92, Jan. 2005.
[20]E. S. Biagioni, and G. Sasaki, “Wireless Sensor Placement For Reliable and Efficient Data Collection,” proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003, 6-9 Jan. 2003.
[21]N. Heo, and P. K. Varshney, “A Distributed Self Spreading Algorithm for Mobile Wireless Sensor Networks,” WCNC 2003, vol. 3, pp. 1597 – 1602, 16-20 March 2003.
[22]S. Poduri, and G. S. Sukhatme, “Constrained coverage for mobile sensor networks,” 2004 IEEE International Conference on Robotics and Automation, 2004, vol.1, pp. 165 – 171, 26 April-1 May 2004.
[23]D. O. Popa, and C. Helm, “Robotic deployment of sensor networks using potential fields,” 2004 IEEE International Conference on Robotics and Automation, 2004, vol.1, pp. 642 – 647, 26 April-1 May 2004.
[24]A. Howard, M. J. Matari´c, and G. S. Sukhatme, “Mobile Sensor Network Deployment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem,” 6th International Symposium on Distributed Autonomous Robotics Systems (DARS02), June 25-27, 2002.
[25]G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,” Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies (INFOCOM 2004), vol.4, pp.469 – 2479, 7-11 March 2004.
[26]A. Ghosh, ”Estimating coverage holes and enhancing coverage in mixed sensor networks,” 29th Annual IEEE International Conference on Local Computer Networks, pp. 68 – 76, 16-18 Nov. 2004..
[27]R. Min, T. Furrer, and A, Chandrakasan, ” Dynamic voltage scaling techniques for distributed microsensor networks, ” Proceeding of IEEE Computer Society Workshop VLSI, 2000 , pp.43 – 46, April 2000.
[28]J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan, “Building efficient wireless sensor networks with low-level naming,” Proceedings of the Eighteenth ACM symposium on Operating Systems Principles, Oct 2001, pp. 146-159.
[29]W. Heinzelman, “Application-Specific Protocol Architectures for Wireless Networks,” Ph.D. thesis, Massachusetts Institute of Technology, 2000.
[30]A. Wang, and A. Chandrakasan, “Energy-efficient DSPs for wireless sensor networks,” Signal Processing Magazine, IEEE , Vol. 19 , pp.68 - 78, July 2002
[31]W. B. Heinzelman, P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660-670, Oct. 2002.
[32]M. Zorzi, and R. R. Rao, “Geographic Random Forwarding (GeRaF) for ad hoc and sensor networks: energy and latency performance,” IEEE Transactions on Mobile Computing, vol. 2, no. 4, Oct.-Dec. 2003.
[33]W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks,” IEEE INFOCOM 2002, pp.1567-1576, 2002.
[34]A. K. Salkintzis and C. Chamzas, “An in-band power-saving protocol for mobile data networks,” IEEE Trans. Commun., vol. 46, pp. 1194–1205, Sept. 1998.
[35]J. Deng, Y. S. Han, B. Heinzelman, and P. K. Varshney, “Scheduling Sleeping Nodes in High Density Cluster-based Sensor Networks,” IEEE International Conference on Communications 2004
[36]C. F. Chiasserini, and R. R. Rao, “Improving energy saving in wireless systems by using dynamic power management,” IEEE Transactions on Wireless Communications, Vol.2 ,pp1090 – 1100, Sept. 2003
[37]A. Sinha ,and A. Chandrakasan, “Dynamic power management in wireless sensor networks,“ IEEE Design & Test of Computers, Vol. 18 , pp. 62 – 74, March-April 2001.
[38]http://www.xbow.com/
[39]http://www.tinyos.net/
[40]http://nescc.sourceforge.net/
[41]C. F. Huang ,and Y. C. Tseng, “The Coverage Problem in a Wireless Sensor Network,” in WSNA’03, September, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 73. 戴輝煌,「西太平洋地區樞紐港埠選擇成本比較分析─ACS模式之應用」,運輸學刊,第十四卷,第四期,1~28頁,民國九十一年。
2. 41. 謝尚行,張斐茹,「軸輻路網模式在定期貨櫃船定線之應用」,運輸計劃季刊,第三十卷,第四期,871~890頁,民國九十年。
3. 31. 董孝行,「貨櫃船最適船型之研究」,運輸計劃季刊,第十五卷,第三期,435~459頁,民國七十五年。
4. 30. 董孝行,「貨櫃船規模經濟的分析」,運輸計劃季刊,第十五卷,第二期,279~299頁,民國七十五年。
5. 24. 陳春益,邱明琦,「貨櫃航線網路設計模式之研究」,運輸計劃季刊,第三十一卷,第二期,267~298頁,民國九十一年。
6. 23. 盧華安,徐育彰,「定期貨櫃航線選擇與船隊部署之研究」,運輸計劃季刊,第三十卷,第三期,577~602頁,民國九十年。
7. 22. 盧華安,「定期貨櫃航線設計之研究」,運輸計劃季刊,第三十一卷,第一期,121~142頁,民國九十一年。
8. 6. 許巧鶯,蕭國洲,「廠商以航空貨運中心為轉運站之研究」,運輸計劃季刊,第二十七卷,第二期,213~244頁,民國八十七年。
9. 5. 許巧鶯,王志青,「軸輻航空貨運網路之直接與轉運路線選擇」,運輸計劃季刊,第二十六卷,第一期,95~118頁,民國八十六年。
10. 1. 許巧鶯,彭美珠,「海運公司之複合快速運送營運策略分析」,運輸計劃季刊,第三十二卷,第四期,715~744頁,民國九十二年。