跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志鋒
研究生(外文):Chih-Feng Lin
論文名稱:直接調變式半導體雷射遭外部光注射之非線性失真特性
論文名稱(外文):Nonlinear Distortion in Directly Modulated Semiconductor Lasers Subject to External Optical Injection
指導教授:黃勝廣
指導教授(外文):Sheng-Kwang Hwang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:142
中文關鍵詞:半導體雷射光注入諧波失真互調失真直接調變光纖通訊
外文關鍵詞:Injection LockingSemiconductor LaserOptical CommunicationHarmonic DistortionDirect ModulationIntermodulation Distortion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:2
本論文係以數值模擬的方式探討直接調變式半導體雷射遭外部光注入後之非線性失真特性。對於模擬計算,雷射系統的特性與動態是以單模方程式來表現。本論文探討此雷射系統在不同的操作和本質參數下,對於諧波和互調失真的影響,以探究適用於實際光纖通訊應用的操作條件。
經由光鎖注入的方式,非線性失真在穩定的光鎖注入條件下可以明顯的減少。在穩定的光鎖注入範圍中,非線性失真減少的現象於不同光注入強度和微調頻率下大部分都能觀察到,由此證明光鎖注入技術是減少非線性失真非常有效的方法。使用光鎖注入之雷射系統其非線性失真減少可達25 dB。在大範圍的調變必v下,非線性失真亦能有效地減少。因為不同雷射系統擁有不同的鬆弛震盪頻率,非線性失真的減少隨著調變頻率變化的情形會有明顯的不同。非線性失真減少通常隨著偏壓電流的增加而減少。本研究也證明非線性失真減少在廣泛的操作和本質參數範圍中都能達到,顯示光鎖注入技術的適用性。
在本研究中,非線性失真減少有兩種主要的機制:經由研究證實增強的鬆弛震盪頻率以及削減的鬆弛震盪共振是造成光鎖注入雷射在高調變頻率下非線性失真減少的主要機制;另一方面,經由研究證實輸出光必v-注入電流 (L-I) 特性的改善是造成光鎖注入雷射在低調變頻率下非線性失真減少的主要機制。
A numerical study on nonlinear distortion in a directly modulated semiconductor laser subject to external optical injection is presented in this thesis. For numerical calculation, a single-mode rate equation characterizing the dynamics and characteristics of the laser system is applied. In this study, harmonic distortion and intermodulation distortion of the laser system as a function of operational parameters and intrinsic parameters are investigated and discussed to explore the appropriate operating conditions for practical applications in optical fiber communications.
Through the injection-locking method, significant nonlinear distortion reduction can be achieved under stable injection-locking. The reduction in nonlinear distortion as a function of injection strength and detuning frequency is observed for most of the region of stable injection-locking, suggesting that the injection-locking technique is a very effective method for nonlinear distortion reduction. Compared to the free-running laser system, significant reduction up to 25 dB in nonlinear distortion is observed. An effective decrease in nonlinear distortion is found over a large range of modulation power. Because of different resonance frequencies for different laser systems, the reduction in nonlinear distortion varies dramatically with modulation frequency. The reduction in nonlinear distortion generally decreases with increasing bias current level. This study shows that the reduction in nonlinear distortion can be obtained over a wide range of operational and intrinsic parameters, indicating the robustness of optical injection-locking technique. The systematic study therefore provides a much greater insight into how the laser should operate for reduction in nonlinear distortion.
Two mechanisms resulting in the reduction of nonlinear distortion are also investigated. One is the enhancement of relaxation oscillation frequency and increase of damping in relaxation oscillation, which significantly reduces nonlinear distortion at high frequencies. The other is the improvement in the linearity of light-current (L-I) characteristic, which is the dominate mechanism at low frequencies for reduction in nonlinear distortion.
Publications and Presentations I
Abstract (in Chinese) II
Abstract (in English) IV
Acknowledgments VI
Figure Caption VII
Contents XIII
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation 4
1.3 Organization of Thesis 6
Chapter 2. Laser System 8
2.1 Semiconductor Lasers 8
2.2 Injection Locking Technique 9
2.3 Theoretical Model 9
2.4 Simulation Model 11
Chapter 3. Harmonic Distortion 14
3.1 Introduction 14
3.1.1 Communication System 14
3.1.2 Modulation Response 16
3.2 Effects of Operational Parameters 17
3.2.1 Modulation Frequency 17
3.2.2 Modulation Power 26
3.2.3 Bias Current 31
3.2.4 Injection Strength and Detuning Frequency 32
3.3 Effects of Intrinsic Parameters 33
3.4 Conclusions 39
Chapter 4. Intermodulation Distortion 41
4.1 Introduction 41
4.1.1 Communication System 41
4.1.2 Modulation Response 43
4.2 Effects of Operational Parameters 44
4.2.1 Modulation Frequency 44
4.2.2 Modulation Power 47
4.2.3 Bias Current 52
4.2.4 Injection Parameter and Detuning Frequency 53
4.3 Effects of Intrinsic Parameters 54
4.4 Effects of Frequency Spacing 60
4.5 Conclusions 60
Chapter 5. Conclusion 63
5.1 Summary 63
5.2 Suggestions for Future Work 64
References 66
Figures 76
[1]. M. Osinski, and J. Buus, “Linewidth broadening factor in semiconductor lasers--An overview,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 9-29, 1987.
[2]. K. Vahala, L.C. Chiu, S. Margalit, and A. Yariv, “On the linewidth enhancement factor in semiconductor injection lasers,” Appl. Phys. Lett., vol. 42, no. 8, pp. 631 -633, 1983 .
[3]. V. Kovanis, A. Gavrielides, T.B. Simpson, and J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett., vol. 67, no. 19, pp. 2780-2782, 1995.
[4]. T.B. Simpson, J. M. Liu, and K.F. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers” Quantum Semiclass. Opt., vol. 9, pp. 765-784, 1997.
[5]. S.K. Hwang, and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun., vol. 183, pp. 195-205, 2000.
[6]. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976-983, 1982.
[7]. F. Mogensen, H. Olsson, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron., vol. 21, no. 7, pp. 784-793, 1985.
[8]. C. H. Henry, N.A. Olsson, and N.K. Dutta, “Locking range and stability of injection locked 1.54 µm InGaAsp semiconductor lasers,” IEEE J. Quantum Electron., vol. 21, no. 8, pp. 1152-1156, 1985.
[9]. N. Olsson, H. Temkin, R. Logan, L. Johnson, G. Dolan, J. van der Ziel, and J. Campbell, J. “Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” Lightwave Technol., vol. 3, no. 1, pp. 63-67, 1985.
[10]. P. Gallion, H. Nakajima, G. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett., vol. 21, no.14, pp. 626-628, 1985.
[11]. T.B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709-711, 1995.
[12]. J. Wang, M.K. Haldar, L. Li, and F.V.C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett., vol. 8, no. 1, pp. 34-36, 1996.
[13]. T.B. Simpson, and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322-1324, 1997.
[14]. J. M. Liu, H. F. Chen, X. J. Meng, and T.B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1325-1327, 1997.
[15]. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron., vol. 39, no.10, pp. 1196-1204, 2003.
[16]. S.K. Hwang, and J. M. Liu, “35-GHz intrinsic bandwidth for direct modulation in 1.3-/spl mu/m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 972-974, 2004.
[17]. S. Piazzolla, P. Spano, and M. Tamburrini, “Small signal analysis of frequency chirping in injection-locked semiconductor lasers,” IEEE J. Quantum Electron., vol. 22, no. 12, pp. 2219-2223, 1986.
[18]. G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Technol. vol. 14, no. 10, pp. 2367-2373, 1996.
[19]. H. F. Chen J. M. Liu, and T.B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun., vol. 173, pp. 349-355, 2000.
[20]. Y. Okajima, S.K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun., vol. 219, pp. 357-364, 2003.
[21]. G. Yabre, and J.L. Bihan, “Reduction of nonlinear distortion in directly modulated semiconductor lasers by coherent light injection,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1132-1140, 1997.
[22]. X.J. Meng, T. Chau, D.T.K. Ting, and M.C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett., vol. 34, no.21, pp. 2040-2041, 1998.
[23]. X.J. Meng, T. Chau, and M.C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE Trans. Microwave Theory Techniques, vol. 47, no. 7(2), pp. 1172-1176, 1999.
[24]. H.-K Sung, Y.-K Seo, and W.-Y Choi, “Dependence of semiconductor laser intermodulation distortions on fiber length and its reduction by optical injection locking,” IEEE International Topical Meeting on Microwave Photonics, pp. 186-189, 2000.
[25]. C.H. Chang; L. Chrostowski, and C.J Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Select. Topics Quantum Electron., vol. 9, no. 5, pp. 1386-1393, 2003.
[26]. X. Zhao, L. Chrostowski, and C.J Chang-Hasnain, “Dynamic range enhancement in 1.55 μm VESELs using injection-locking,” IEEE International Topical Meeting on Microwave Photonics, pp. 111-114, 2004.
[27]. G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, and R.G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 μm F-P and DFB lasers,” IEEE J. Quantum Electron., vol. 27, no. 7, 1990-2002, 1991.
[28]. G. Morthier, “Design and optimization of strained-layer-multiquantum-well lasers for high-speed analog communications,” IEEE J. Quantum Electron., vol. 30, no. 7, 1520-1528, 1994.
[29]. H. Watanabe, T. Aoyagi, A. Takemoto, T. Takiguchi, and E. Omura, “1.3-μm strained MQW-DFB lasers with extremely low intermodulation distortion for high-speed analog transmission,” IEEE J. Quantum Electron., vol. 32, no. 6, pp. 1015-1023, 1996.
[30]. A. Lingard, and N.A. Olsson, “Generation and cancellation of second-order harmonic distortion in analog optical systems by interferometric FM-AM conversion,” IEEE Photon. Technol. Lett., vol. 2, no. 7, pp. 519-521, 1990.
[31]. K. Kikushima, and H. Yoshinaga, “Distortion due to gain tilt of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 945-947, 1991.
[32]. G. Yabre, “Interferometric conversion of laser chirp to IM: effect of the interferometer free spectral range on the output nonlinear distortion,” IEEE Photon. Technol. Lett., vol. 8, no.10, pp. 1388-1390, 1996.
[33]. K. Petermann, “FM-AM noise conversion in dispersive single-mode fibre transmission lines,” Electron. Lett., vol. 26, no. 25, pp. 2097-2098, 1990.
[34]. G. Yabre, and J.L. Bihan, “Intensity modulation technique using a directly frequency-modulated semiconductor laser and an interferometer,” J. Lightwave Technol., vol. 13, no. 10, pp. 2093-2098, 1995.
[35]. Y. Suematsu, and S. Arai, “Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers,” IEEE J. Select. Topics Quantum Electron., vol. 6, no. 6, pp. 1436-1449, 2000.
[36]. J.C. Cartledge, “Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator,” J. Lightwave Technol., vol. 8, no. 5, pp. 716-721, 1990.
[37]. F. Devaux, “Optimum prechirping conditions of externally modulated lasers for transmission on standard fibre,” IEE Proc. Optoelectronics, vol. 141, no.6, pp. 363-366, 1994.
[38]. X. Li, and W.P. Huang, “Analysis of frequency chirp in DFB lasers integrated with external modulators,” IEEE J. Quantum Electron., vol. 30, no. 12, pp. 2756-2766, 1994..
[39]. K.E. Stubkjr, “Nonlinearity of D.H. GaAlAs lasers,” Electron. Lett., vol. 15, no. 2, pp. 61-63, 1979.
[40]. Y. Kam, and A. Yariv, “Nonlinear distortion in the current modulation of non-self-pulsing and weakly self-pulsing GaAs/GaAlAs injection lasers,” Opt. Commun., vol. 34, no. 3, pp. 424-428, 1980.
[41]. A. Van De Grijp, J.C. Koopman, L. J. Meuleman, A.J.A. Nicia, E. Poza, and J.H.C. Van Heuven, “Novel electro-optical feedback technique for noise and distortion reduction in high-quality analogue optical transmission video signals,” Electron. Lett., vol. 17, pp. 361-362, 1981.
[42]. L.S. Fock, and R.S. Tucker, “Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feedforward compensation,” Electron. Lett., vol. 27, no.14, pp. 1297-1299, 1991.
[43]. H.T. Lin and Y.H. Kao, “Nonlinear distortions and compensations of DFB laser diode in AM-VSB lightwave CATV applications,” J. Lightwave Technol., vol. 14, no. 11, pp. 2567-2574, 1996.
[44]. P.M. Hill, and R. Olshansky, “Multigigabit subcarrier multiplexed coherent lightwave system,” J. Lightwave Technol., vol. 10, no. 11, pp. 1656-1664, 1992.
[45]. R. O lshansky, V.A. Lanzisera, and P. M. Hill, “Subcarrier multiplexed lightwave systems for broad-band distribution,” J. Lightwave Technol., vol. 7, no. 9, pp. 1329-1342, 1989.
[46]. W. I. Way, “Subcarrier multiplexed lightwave system design considerations for subscriber loop applications,” J. Lightwave Technol., vol. 7, no. 11, pp. 1806 -1818, 1989.
[47]. T.E. Darcie, “Subcarrier multiplexing for lightwave networks and video distribution systems,” J. Select. Areas Commun., vol. 8, no. 7, pp. 1240-1248, 1990.
[48]. L. Chrostowski, C.H. Chang; and C.J Chang-Hasnain, “Injection-locked 1.55 μm VCSELs with enhanced spur-free dynamic range,” Electron. Lett., vol. 38, no. 17, pp. 965-967, 2002.
[49]. L. Chrostowski, C.H. Chang; and C.J Chang-Hasnain, “Enhancement of dynamic range in 1.55-/spl mu/m VCSELs using injection locking,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 498-500, 2003.
[50]. J. Piprek, K. Takiguchi, K.A. Black, E.L. Hu, and J. E. Bowers, “Harmonic distortion in 1.55-μm vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 12 pp. 1686-1688, 2000.
[51]. S.Y. Huang, L.C. Upadhyayula, J. Lipson, E.J. Flynn, and C.B. Roxlo, “Frequency-dependent distortions of composite triple beat in lightwave CATV transmission systems,” J. Select. Areas Commun., vol. 8, no. 7, pp. 1365-1368, 1990.
[52]. T. Okuda, H. Yamada, T. Torikai, and T. Uji, “Novel partially corrugated waveguide laser diode with low modulation distortion characteristics for subcarrier multiplexing,” Electron. Lett., vol. 30, no. 11, pp.862-863, 1994.
[53]. K.Y. Lau, and A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett., vol. 45, no. 10, pp. 1034-1036, 1984.
[54]. T.E. Darcie, and R.S. Tucker, “Intermodulation and harmonic distortion in InGaAsP lasers,” Electron. Lett., vol. 21, no.16, pp. 665-666, 1985.
[55]. C.Y. Kuo, “Fundamental second-order nonlinear distortions in analog AM CATV transport systems based on single frequency semiconductor lasers” J. Lightwave Technol., vol. 10, no. 2, pp. 235-243, 1992.
[56]. L. Zhang, and D.A. Ackerman, “Second- and third-order harmonic distortion in DFB lasers,” IEEE J. Quantum Electron., vol. 31, no. 11, pp. 1974-1980, 1995.
[57]. J. Chen, R.J. Ram, and R. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE J. Quantum Electron., vol. 35, no. 8, pp. 1231-1237, 1999.
[58]. W.I. Way, “Large signal nonlinear distortion prediction for a single-mode laser diode under microwave intensity modulation,” J. Lightwave Technol., vol. 5, no. 3, pp. 305-315, 1987.
[59]. J. Helms, “Intermodulation distortions of broad-band modulated laser diodes,” J. Lightwave Technol., vol. 10, no. 12, pp.1901-1906, 1992.
[60]. Y. Darcie, and G.E. Bodeep, “Lightwave subcarrier CATV transmission systems,” IEEE Trans. Microwave Theory Techniques, vol. 38, no. 5, pp. 524-533, 1990.
[61]. T.B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol. 32, no. 8, pp. 1456-1468, 1996.
[62]. C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol., vol. 4, no. 3, pp. 298-311, 1986.
[63]. G.P. Agrawal, and N.K. Dutta, Long-Wavelenth Semiconductor Laser, New York: Van Nostrand Reinhold, 1986.
[64]. J. M. Liu, and T.B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron., vol. 30, no. 4, pp. 957-965, 1994.
[65]. K. Stubkjaer, and M. Danielsen, “Nonlinearities of GaAlAs lasers--Harmonic distortion,” IEEE J. Quantum Electron., vol. 16, no.5, pp. 531-537, 1980.
[66]. C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion reduction in transverse mode stabilized oxide-confined VCSELs,” IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 520-522, 2001.
[67]. C.D. Poole, and T.E. Darcie, “Distortion related to polarization-mode dispersion in analog lightwave systems,” J. Lightwave Technol., vol. 11, no. 11, pp.1749-1759, 1993.
[68]. M.R. Phillips, T.E. Darcie, D. Marcuse, G.E. Bodeep, and N.J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett., vol. 3, no. 5, pp.481-483, 1991.
[69]. S. Hunziker, and W. Baechtold, “Fiber dispersion induced nonlinearity in fiber-optic links with multimode laser diodes,” IEEE Photon. Technol. Lett., vol. 9, no. 3, pp. 371-373, 1997.
[70]. S. Betti, E. Bravi, and M. Giaconi, “Effects of intermodulation distortions due to the joint action of dynamic chirping and “dispersive” transmission of SCM optical signals,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 680-682, 1999.
[71]. T. Okuda, H. Yamada, T. Torikai, and T. Uji, “DFB laser intermodulation distortion analysis taking longitudinal electrical field distribution into account,” IEEE Photon. Technol. Lett., vol. 6, no. 1, pp. 27-30, 1994.
[72]. M. Kito, H. Sato, N. Otsuka, N. Takenaka, M. Ishino, and Y. Matsui, “Analysis of the second- and third-order intermodulation distortion in DFB lasers including dynamic spatial hole burning effect,” IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 144-146, 1995.
[73]. H. M. Salgado, J.C.D. Castro, and J.J. O;reilly, “Effect of gain compression on the FM nonlinear distortion in semiconductor lasers,” IEEE J. Quantum Electron., vol. 32, no. 6, pp. 981-985, 1996.
[74]. C.Y. Tsai, Y.H. Lo, R.M. Spencer, and C.Y. Tsai, “Effects of hot phonons on carrier heating in quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 9, pp. 950-952, 1995.
[75]. M.S. Lin, S.J. Wang, and N.K. Dutta, “Temperature dependence of the harmonic distortion in InGaAsP distributed feedback lasers,” J. Appl. Phys., vol. 67, no.11, pp. 6661-6666, 1990.
[76]. S.K. Hwang, Modulation and Dynamical Characteristics of High-Speed Semiconductor Lasers Subject to Optical Injection, UCLA, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳重禮、王宏忠:〈我國選民「分立政府」心理認知與投票穩定度:以2000年總統選舉與2001年立法委員選舉為例〉,《選舉研究》,2003,第十卷,第一期,頁81-114。
2. 吳重禮、王宏忠:〈我國選民「分立政府」心理認知與投票穩定度:以2000年總統選舉與2001年立法委員選舉為例〉,《選舉研究》,2003,第十卷,第一期,頁81-114。
3. 王業立:〈縣市長選舉結果與地方政黨版圖變遷〉,《國家政策論壇》,2002,第二卷,第二期,頁 75-82。
4. 王業立:〈縣市長選舉結果與地方政黨版圖變遷〉,《國家政策論壇》,2002,第二卷,第二期,頁 75-82。
5. 洪永泰:〈選舉預測:一個以整體資料為輔助工具的模型〉,《選舉研究》,1994,第一卷,第一期,頁93-110。
6. 洪永泰:〈選舉預測:一個以整體資料為輔助工具的模型〉,《選舉研究》,1994,第一卷,第一期,頁93-110。
7. 何思因:〈我國選民的政黨偏好〉,《東亞季刊》,1992,第二十四卷,第一期,頁51-62。
8. 何思因:〈我國選民的政黨偏好〉,《東亞季刊》,1992,第二十四卷,第一期,頁51-62。
9. 徐火炎:〈台灣政治版圖的重劃:民進黨、國民黨與親民黨的「民」基比較〉,《東吳政治學報》,2002,第十四期,頁83-134。
10. 徐火炎:〈台灣政治版圖的重劃:民進黨、國民黨與親民黨的「民」基比較〉,《東吳政治學報》,2002,第十四期,頁83-134。
11. 徐永明:〈「南方政治」的形成?--台灣政黨支持的地域差別,1994-2000〉,《國立中山大學社會科學季刊》,2000,第二卷,第四期,頁167-196。
12. 徐永明:〈「南方政治」的形成?--台灣政黨支持的地域差別,1994-2000〉,《國立中山大學社會科學季刊》,2000,第二卷,第四期,頁167-196。
13. 徐永明:〈政治版圖—兩個選舉行為研究途徑的對話〉,《問題與研究》,2001,第四十卷,第二期,頁95-115。
14. 徐永明:〈政治版圖—兩個選舉行為研究途徑的對話〉,《問題與研究》,2001,第四十卷,第二期,頁95-115。
15. 陳義彥、盛杏湲:〈政治分歧與政黨競爭:二00一年立法委員選舉的分析〉,《選舉研究》,2003,第十卷,第一期,頁7-40。