(3.238.186.43) 您好!臺灣時間:2021/03/01 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡正文
研究生(外文):Tsai Zheng Wen
論文名稱:使用超晶格結構及緩衝層對氮化鎵磊晶品質影響之研究
論文名稱(外文):Investigation of the GaN crystallization using super lattice and buffer layer
指導教授:吳國梅
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:61
中文關鍵詞:超晶格緩衝層氮化鎵
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要目的在於研究使用氮化鎵/氮化鋁超晶格結構降低氮化鎵磊晶層內穿透式差排密度以及使用氮化鈦為緩衝層成長氮化鎵磊晶層。氮化鎵薄膜以有機金屬化學氣相沉積法生長於矽基板上。薄膜中鋁、鎵與氮原子分別來自於三甲基鋁、三甲基鎵及高純度氨氣,輸送氣體則為經過高度純化之氫氣。氮化鎵薄膜之表面型態、磊晶品質及結構特性分別使用掃描式電子顯微鏡、雙晶X-光薄膜繞射儀、穿透式電子顯微鏡加以分析。研究結果顯示,氮化鎵/氮化鋁超晶格結構的確可以改善氮化鎵薄膜的結晶性並且成功的在矽基板上使用氮化鈦緩衝層成長出氮化鎵磊晶層。由穿透式電子顯微鏡的觀察得知,使用氮化鎵/氮化鋁應變晶格結構確實對降低氮化鎵磊晶薄膜內的差排有相當大的助益而由高解析原子影像證實能矽基板與氮化鈦緩衝層間的磊晶關係。氮化鎵薄膜內穿透式差排密度的降低源自於應變多層結構誘導差排相互作用而形成另一相同特質的差排。
The purpose of this study is to explore the effect of GaN/AlN superlattice on decreasing the density of threading dislocation (TD) in GaN film and property of TiN buffer layer. GaN film were grown on (111) Silicon substrate by Metalorganic Chemical Vapor Deposition (MOCVD). Trimethylaluminum (TMAl), trimethylgallium (TMGa), trimethylindium (TMIn) and ammonia (NH3) were used as Al, Ga, In and N sources, respectively. Hydrogen (H2) were used as carrier gas. The surface morphology, crystallization and structure of GaN films were investigated by scanning electron microscopy (SEM), double crystal X-ray diffraction (DCXRD) and transmission electron microscopy (TEM). Experimental results indicate that the crystallization of GaN films having GaN/AlN superlattice structure is improving and growth GaN film using TiN buffer layer successfully. TEM observations show that the insertion of 9 pairs GaN(20nm)/AlN(2nm) superlattice structure was helpful to reduce TD density in GaN films and confirm the epitaxy of TiN and Si substrate . The TD density reduction in a GaN film having an above-mentioned superlattice structure is primarily due to TD merge processes at the superlattice structure.
中文摘要…………………………………………………………………..…………i
英文摘要…………………………………………………………………….………ii
目錄………………………………………………………………………………….iii
圖目錄……………………………………………………………………………….vi
表目錄……………………………………………………………………………...viii
第一章 緒論……………………………………………………….……………….1
1.1 發光二極體的發展歷史…………………………………….…………1
1.2 研究動機……………………………………………………….…………3
1.3 論文架構…………………………………………………….……………4
第二章 原理及文獻回顧…………………………………………….…………5
2.1 氮化鎵磊晶基板的選擇……………………………………….………5
2.2 氮化合物的材料特性………………………………………………. ..10
2.2.1氮化鎵的材料特性………………………………….…………..10
2.2.2氮化鈦的材料特性…………………………………………… ..10
2.3 穿透式差排的形成機制及影響…………………………………….13
2.3.1 異質磊晶之結構……………………………………………….13
2.3.2 穿透式差排形成原理…………………………………………15
2.3.3 穿透式差排對元件的影響…………………………………...16
2.4 發光二極體的原理…………………...……………… ……………..19
第三章 樣品與實驗儀器介紹及原理……...………………………………...23
3.1 實驗樣品結構…………………………………………………………..23
3.2 穿透式電子顯微鏡……………………...…………………………….25
3.2.1 橫截面試片製作情形……………………..…………………25
3.2.2 穿透式電子顯微鏡原理……………………………..……...26
3.3 X-光薄膜繞射儀……………………………………….………………30
3.4 掃描式電子顯微鏡……………………………………………………32
3.5 原子力顯微鏡…………………………………………………………..32
第四章 實驗結果與討論…………………………………. ……….…………34
4.1 氮化鎵/氮化鋁應變超晶格結構對磊晶薄膜的影響………….34
4.1.1 氮化鎵/氮化鋁超晶格結構對穿透式插排的影響……34
4.1.2 穿透式電子顯微鏡結果分析………………………………38
4.1.3 雙晶X-光薄膜繞射儀結果分析……………………...……43
4.1.4 掃描式電子顯微鏡分析結果…………………….…..…….46
4.1.5 原子力顯微鏡分析結果………………………….……..…..49
4.2 使用氮化鈦緩衝層對磊晶薄膜的影響…………….……………..51
4.2.1穿透式電子顯微鏡結果分析…………………….……….…51
4.2.2 雙晶X-光薄膜繞射儀結果分析………………….……..…54
第五章 結論………………………………………………………………….55
第六章 未來展望……………………………………………………………….56
參考文獻……………………………………………………………….……….57
[1] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992).
[2] K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, and J. W. Ager III, Appl. Phys. Lett. 86, 071910(2005)
[3] S.P. Denbarrs Proceeding of the IEEE, Vol.85, No.11, Nov. 1997
[4] J. T. Torvik, J. I. Pankove, and B. Van Zeghbroeck, Solid-State Electronics Vol.44, 1229 (2000)
[5] P. Kung, A. Saxler, X. Zhang, D. Walker, T. C.Wang, I. Ferguson, and M. Razeghi, ,Appl. Phys. Lett. Vol. 66, 2958 (1995)
[6] J. W. Yang, C. J. Sun, Q. Chen, M.Z. Anwar, M.S. Khan, S. A.
Nikishin, G. A. Seryogin, G. A. Seryogin, A. V. Qsinsky, L. Chernyak,
H. Temkin, C. Hu, and S. Mahajan, Appl. Phys. Lett. Vol. 69, 3566 (1996)
[7] A. Strittmatter, D. Bimberg, A.Krost, J. Blasing, and P. Veit,
J. Crystal Growth Vol. 221, 293 (2000)
[8]Min-Ho Kim, Young-Gu Do, Hyon Chol Kang, Do Young Noh, Seong-Ju Park, Appl. Phys. Lett. 79 (2001) 2713.
[9]Seong-Hwan Jang, Cheul-Ro Lee*, J. Crystal Growth 253 (2003) 64-70.
[10]C.R. Abernathy, in GaN and Related Materials, edited by S. J. Pearton (Gordon and Breach, New York, 1997), pp11-51.
[11]S. N. Mohmmad, W. Kim, A.Salvador, and H. Morkoc, MRS Bull. 22, 22 (1997).
[12]G. Popovic, H.Morkoc, and S. Noor Mohammad, Group Ⅲ-Nitride semiconductor Conpounds, pp.19-69.
[13]H. Amano, T. Asahi and I. Akasaki, Jpn. J. Appl. Phys. 29, L205(1990)
[14]M. gherasimova, G. Cui, Z. Ren, J. Su, X. L. Wang, and J. Han, Journal of Appl. Lett. VOL 95, 5(2004)
[15]S. Nakamura, MRS BULLETIN, 37 (1998).
[16]A. M. Sanchez and P. Ruterana, Appl. Phys. Lett. VOL82, 25(2003)
[17]H.D.Li,T.Wang,N.Jiang,Y.H.Liu,J.Bai,S.Sakai, Journal of Crystal Growth 247,28(2003)
[18]B.Pécz,Zs.Makkai, M.A.di Forte-Poisson , F. Huet, R. E. Dunin-Borkowski, Applied Physics Letters 78,1529(2001)
[19]J.Jasinski,Z.Liliental-Weber,Q.S.Paduano,and W.Weyburne, Applied Physics Letters 83,2811(2003)
[20]H.K.Cho,J.Y.Lee,G.M.Yang,C.S.Kim, Applied Physics Letters 79,215(2001)
[21]H. Morkoc, “Nitride semiconductors and devices.” (1999)
[22]A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, Phys. Rev. B Vol. 48,11810 (1993)
[23]C. Y. Ting and M. Wittmer, Thin Solid Films, 96, 327 (1982)
[24]H.Wendt,1993 VMIC Conference,p.281
[25]M. Kiuchi and A. Chayahara, Appl. Phys. Lett., Vol. 64, pp.1048-1049, (1994).
[26]G. B. Stringfellow, and M. George Craford, “ High brightness light emitting diodes”, Vol. 48, Semiconductors and Semimetals. New York: Academic, 1997.
[27]R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Alley, K.
Linthicum, L. B. Rowland, S. Tanaka, and R. S. Kern, J. Cryst. Growth 178, 87 (1997).
[28]X. B. Li, D. Z. Sun, M. Y. Kong, and S. F. Yoon, J. Cryst. Growth
183, 31 (1998).
[29]P. Ruterana, P. Vermaut, V. Potin, G. Nouet, A. Botchkarev, A.
Salvador, and H. Morkoc, Mater. Sci. Eng. B 50, 72 (1997).
[30]P. Vennegues, B. Beaumont, M. Vaille, and P. Giban, J. Cryst.
Growth 173, 249 (1997).
[31]B. Pecz, M. A. di Forte-Poisson, L. Toth, G. Radnoczi, G. Huhn, V. Papaioannou, and J. Stoemenos, Materials Science and Engineering
B, (B50) 93, 1997.
[32]C. Y. Hwang, M. J. Schurman, W. E. Mayo, Y. C. Lu, R. A. Stall,
and T. Salagaj, J. Electron. Mater. 26, 243 (1997).
[33]Electronic Thin Film Science For Electronic Engineers and Materials Scientists, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman, (1992).
[34]H. Amano, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28,
L1384 (1988).
[35]J. W. Matthews, Epitaxial Growth, Academic, New York (1975).
[36]H. F. Matare`, Defect Electronics in Semiconductors,
Wiley-Interscience, New York (1971).
[37]Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Jpn. J. Phys. V36 L1568 (1997).
[38]郭行健,科儀新知 第24卷,第3期,40(91)
[39]汪建民,材料分析,中國材料科學學會
[40]D.Shindo, T.Oikawa, Analytical Electron Microscopy for Materials Science(2002) by Springer.
[41]陳力俊,材料電子顯微鏡學
[42]A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81
(9), 6332 (1997).
[43]Y. Ono, Y. Iyechika, T. Takada, K. Inui, T. Matsue, J. Cryst. Growth 189/190, 133, (1998).
[44]I. Akasaki and H. Amano, Jpn. J. Appl. Phys. 36, 5393 (1997).
[45]A.Thamm, O.Brandt, Y.Takemura, A.Trampert, and K.H.Ploog,
Appl. Phys. Lett. 75, 944 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔