跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳榆翔
研究生(外文):Wu Yu Hsiang
論文名稱:高亮度氮化鎵發光二極體金屬基板之研究
論文名稱(外文):Metallic Substrate for High Brightness GaN LEDs
指導教授:張本秀陳乃權
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:72
中文關鍵詞:金屬基板氮化鎵發光二極體熱效應傳導率吸光性二極體可靠度
外文關鍵詞:metallicGaNLEDafter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
自發光二極體(light-emitting diode, LED)於1962 年問世以來,如何提升發光二極體的發光效率一直是一個重要課題。從早期(Homogenous)結構到目前的異質接面(Heterojunction)結構,雖然發光二極體的發光效率已有極大的進步,但是目前發光二極體在發光效率與可靠度(reliability)上仍有改善的空間。因為缺少晶格匹配的基板,目前成長GaN多用Sapphire或者是SiC做基板,這些材料價格昂貴而且Sapphire是絕緣體,所以用Si作基板一直是大眾的願望。經過本實驗室不斷的努力,無裂痕品質佳的GaN已成長在Si基板上,證明可以用Si基板作商用的LED已指日可待。但由於Si基板LED發光效率仍不及目前主流的Sapphire基板LED,因此本論文將提出以金屬基板垂直導通的方式改善Si基板LED的發光效率。
我們將提出以電鍍法備製鎳金屬之方式,使用鎳金屬做為我們新型發光二極體結構之基板。鎳金屬較一般所使用的Sapphire基板或Si基板擁有更低的電阻率及較高的熱傳導率。較低的電阻率與較高的熱傳導率有助於元件的可靠度的提升與降低熱效應(thermal effect)對元件發光效率的影響。傳統Si基板具有吸光性,所以我們使用溼式蝕刻將Si基板去除,基板改以鎳金屬取代後,能夠大幅地降低元件所發出的光被基板所吸收的機率,同時可達反射之效;此外,更可以垂直導通方式減少製程步驟,增加出光面積。如此一來,便可以大幅地提高發光效率。而使用溼式蝕刻Si基板以及電鍍法備製鎳金屬基板也有良率較易控制、量產與低製造成本等等的優點。
Crack-free thin-film InGaN multiple-quantum-well light-emitting diodes were successfully transferred from the original Si (111) substrate onto nickel substrate by means of electroplating and the selective lift-off (SLO) technique using wet-chemical etching. Crystalline quality was investigated by x-ray diffraction (XRD), Scanning Electron Microscopy(SEM) and Energy Dispersive X-ray Spectroscopy(EDS) measurements.

No deterioration was found in the thin film after substrate removal due to the fact the selective lift-off technique minimizes the residual strain relaxation. Substrate removal eliminates not only the substrate absorption but also the large band offset between the AlN buffer layer and Si substrate. In conjunction with inserting a metal reflector between the LED structure and the nickel substrate, the performances of the LED fabricated on the substrate removal region were significantly improved.
中文摘要..................................................v
英文摘要.................................................vii
誌謝....................................................viii
第一章 緒論...............................................1
1-1 前言.................................................1
1-2 簡介.................................................2
1-3 研究動機.............................................3
第二章 發光二極體簡介.....................................5
2-1 發光二極體工作原理....................................5
2-2 發光效率與量子效率....................................6
2-3 高亮度發光二極體......................................8
第三章 高亮度金屬基板發光二極體..........................12
3-1 前言.................................................12
3-2 高亮度金屬基板發光二極體之製備.......................13
3-2-1 LED on Si磊晶片清洗............................13
3-2-2 p-GaN的活化處理...............................13
3-2-3 p-GaN歐姆接觸的製作...........................14
3-2-4 光反射層......................................15
3-2-5 電鍍鎳金屬基板................................16
3-2-6 溼式蝕刻矽基板................................17
3-2-7 n-GaN side up電極微影製程......................19
3-2-8 雷射切割絕緣..................................21
第四章 實驗結果與討論....................................22
4-1 X光繞射儀............................................23
4-1-1 X光繞射儀簡介.................................23
4-1-2 XRD結果與討論.................................24
4-2 掃描式電子顯微鏡.....................................24
4-2-1 掃瞄式電子顯微鏡原理...........................24
4-2-2 SEM and EDS結果與討論..........................25
4-3 電流與電壓特性.......................................26
第五章 結論與未來展望....................................28
5-1 研究重點總結.........................................28
5-2 未來展望.............................................29
圖目錄
圖1.1 三五族材料能隙 VS 晶格常數.........................30
圖2.1 兩個能階間的三種基本轉換過程(a)吸收 (b)自發放射 (c)誘發放射...............................................31
圖2.2 (a)同質接面零偏壓 (b)同質接面順向偏壓 (c)異質接面順向偏壓.................................................32
圖2.3 (a)經過一深層能階非輻射復合 (b)經過Auger過程的非輻射復合 (c)輻射復合發光..................................33
圖2.4 歐姆接觸調整 三種金屬接觸電極 (a) (b) (c).............34
圖2.5 擁有電流阻隔層的LED模型..........................35
圖2.6 使用AS(Absorbing Substrate) 吸收可見光基板光輸出模型..36
圖3.1 RTA之前Ni/Au 22Å/35Å在460~467nm穿透率............37
圖3.2 RTA之後Ni/Au 22Å/35Å在460~467nm穿透率...........38
圖3.3 光通過GaN受反射層光反射率.........................39
圖3.4 電鍍基本設備圖.....................................40
圖3.5 電感耦合式電漿系統(ICP)示意圖.......................41
圖3.6 N-GaN side up的電極圖示.............................42
圖3.7 經過laser切割後的LEDs chip..........................43
圖4.1 sample 530 磊晶層結構...............................44
圖4.2 sample 536 磊晶層結構...............................45
圖4.3 sample 537 磊晶層結構...............................46
圖4.4 高亮度金屬基板LED製備流程圖......................47
圖4.5 X光繞射儀構造示意圖................................48
圖4.6 布拉格干涉圖形.....................................49
圖4.7 sample530蝕刻Silicon基板前後XRD繞射圖形............50
圖4.8 sample533蝕刻Silicon基板前後XRD繞射圖形............51
圖4.9 sample537蝕刻Silicon基板前後XRD繞射圖形............52
圖4.10 掃描式電子顯微鏡系統設計圖........................53
圖4.11 鎳金屬基板上的Nitride LED..........................54
圖4.12 (a) sample 530 LED on Silicon (b) sample 530 LED on Metal....................................................55
圖4.13 sample 537 LED on Metal cross section...................56
圖4.14 Nitride LED on Metal EDS元素組成分析................57
圖4.15 Nitride LED on Metal EDS元素組成分析................58
圖4.16 sample 530 EDS元素組成分析.........................59
圖4.17 sample 530 EDS元素組成分析.........................60
圖4.18 sample 530 EDS元素組成分析.........................61
圖4.19 sample 530 EDS元素組成分析.........................62
圖4.20 sample 537 EDS元素組成分析.........................63
圖4.21 sample 537 EDS元素組成分析.........................64
圖4.22 sample 537 EDS元素組成分析.........................65
圖4.23 sample 537 EDS元素組成分析.........................66
圖4.24 sample 537 EDS元素組成分析.........................67
圖4.25 sample 537 EDS元素組成分析.........................68
圖4.26 sample533 on Si I-V曲線..............................69
圖4.27 sample533 on Metal I-V曲線...........................70
圖4.28 未切割前高亮度金屬基板LED........................71
圖4.29 雷射切割後高亮度金屬基板LED......................72
圖4.30 sample533 on Si and Metal漏電流比較..................73
圖4.31 LED on Metal substrate 表面crack..................74
參考文獻
[1]史光國,現代半導體發光及雷射二極體材料技術,Ch2
[2] H.M. Liaw, R. Vengopal, J. Wan, M.R. Melloch “Epitaxial GaN films grown on Si(111) with varied buffer layers” Solid-State Electronics 45 (2001) 1173-1177
[3] H. Kawanami “Heteroepitaxial technologies of III-V on Si” Solar Energy Materials & Solar Cells 66 (2001) 479-486
[4] Wentao Jua, Daniel A. Gulino, Ryan Higgins “Epitaxial lateral overgrowth of gallium nitride on silicon substrate” Journal of Crystal Growth 263 (2004) 30–34
[5] Wei Yang, Scott A. McPherson, Zhigang Mao, Stuart McKernan, C. Barry Carter “Single-crystal GaN pyramids grown on (1 1 1)Si substrates by selective lateral overgrowth” Journal of Crystal Growth 204 (1999) 270-274
[6] Bernard BEAUMONT, Pierre GIBART, Nicolas GRANDJEAN, Jean MASSIES “Growth of gallium nitride epitaxial layers and applications” C. R. Acad. Sci. Paris, t. 1, Série IV, p. 35–49, 2000
[7] 高弘毅, 高效率白光LED技術動向
[8] Hiroyasu Ishikawa, Baijun Zhang, Kenta Asano,Takashi Egawa, Takashi Jimbo “Characterization of GaInN light-emitting diodes with distributed Bragg reflector grown on Si” Journal of Crystal Growth 272 (2004) 322–326
[9] 呂育聰,利用電流阻隔層及鈍化層的研究來改善氮化鎵藍光二極體的發光效率
[10] Y.C. Lin , S.J. Chang , Y.K. Su, T.Y. Tsai , C.S. Chang, S.C. Shei ,C.W. Kuo , S.C. Chen “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts”Solid-State Electronics 47 (2003) 849–853
[11] Y.C. Lin, S.J. Chang, Y.K. Su, C.S. Chang, S.C. Shei, J.C. Ke, H.M. Lo, S.C. Chen, C.W. Kuo “High power nitride based light emitting diodes with Ni/ITO p-type contacts” Solid-State Electronics 47 (2003) 1565–1568
[12] Yasuo Koide, H. Ishikawa, S. Kobayashi, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, Masanori Murakami “Dependence of electrical properties on work functions of metals contacting to p-type GaN” Applied Surface Science 117/l 18 (1997) 373-379
[13] 川合慧,今井雄一,青谷薰,友野理平,實用電鍍技術全集,Ch7
[14] Kenji Tokoro, Daisuke Uchikawa, Mitsuhiro Shikida, and Kazuo Sato “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions”Dept. of Micro System Engineering, Nagoya University Chikusa, Nagoya, 464-8603, Japan
[15] Werasak Sonphao, Somsak Chaisirikul “Silicon Anisotropic Etching of TMAH Soluion”
[16] N. Gabouze “A new preferential etch of silicon (111) with ammonia system” Surface Science 507–510 (2002) 429–433
[17] GREGORY T. A. KOVACS, MEMBER, IEEE, NADIM I. MALUF, MEMBER, IEEE,AND KURT E. PETERSEN, FELLOW, IEEE “Bulk Micromachining of Silicon”
[18] Baijun Zhang, Takashi Egawa, Hiroyasu Ishikawa, Yang Liu, and Takashi Jimbo “Thin-film InGaN multiple-quantum-well light-emitting diodes transferred from Si(111) substrate onto copper carrier by selective lift-off”APPLIED PHYSICS LETTERS 86, 071113(2005)
[19] E. Fred Schubert “LED-slide-show”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊