跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周煌柱
研究生(外文):Huang-Chu Chou
論文名稱:以DSP為基礎之線型永磁同步電動機分段式複合磁碟機設計
論文名稱(外文):DSP Based Multi-Sectional Composite Driver Design of Linear Synchronous Machine
指導教授:郭見隆郭見隆引用關係李建德李建德引用關係
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:線型同步電動機霍爾-ICDSP 2407
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主在設計一新型態之線型電動機及研製其磁碟機﹐其線型電動機之設計上﹐有別於傳統之三相式線型電動機的型態。本論文中所設計之線型電動機乃為一兩相式之無刷線型永磁同步電動機。本論文中﹐所設計之線型電動機﹐乃屬於單側激磁構造型態之線型電動機﹐在其線型電動機結構上之電樞線圈及永久磁鐵的設計﹐採用單(磁)極性之設計方式實現。此種設計方法﹐可使線型電動機在其主體結構的設計上﹐較傳統的設計上為之簡單就可實現。在其磁碟機之設計上﹐為配合線型電動機固定部的無限延長性﹐本論文使用霍爾-IC輔與一編碼器配合以DSP 2407為核心的控制器﹐在於磁碟機的設計上採用分段式複合磁碟機的設計方式﹐使之線型電動機在其固定部(軌道)能量的供給上﹐針對推進部行經之部分進行能量供給﹐而非隨固定部(軌道)的增長﹐造成全區域能量供應上的浪費。
Abstract
The design of a novel multi-sectional linear synchronous machine and its driver are proposed in this paper. The driving method of the proposed linear motor is quite different with the driving method of the conventional linear motor.
The multi-sectional linear synchronous machine and its driver mean that the motor is composed of several individual sub-sectional units. The sub-section unit is formed by individual winding, E-core and Hall-IC. The multi-sectional design implies that the proposed linear synchronous machine can be controlled by the aspect of module. It can easier achieve the implementation and control of infinite expansion railway than the conventional linear synchronous machine.
To reduce the power consumption on the infinite expansion railway (E-core and its winding), the digital signal processor (DSP2407) with an encoder is used to dispatch the ON-OFF signal for the corresponding individual Hall-IC and winding. All of the windings are indirectly governed by the encoder. By the property of the encoder, there is only one winding is driven at a moment, that is, other windings are under rest. Therefore, the multi-sectional design is helpful for the energy management of this proposed linear motor.
目 錄
指導教授推薦書.........................................................................................i
口試委員會審定書....................................................................................ii
長庚大學博碩士紙本論文著作授權書..................................................iiii
誌謝...........................................................................................................iv
中文摘要.....................................................................................................v
英文摘要...................................................................................................vi
目錄..........................................................................................................vii
圖目錄......................................................................................................xi
表目錄.....................................................................................................xiv

第一章 序論………………………………………………………….…1
1.1 研究背景…………………………………………………...….1
1.2 研究動機與目的……………………………………….………3
1.3 研究方法與系統描述……………………………..…….……..4
第二章 線型電動機介紹....………………………………………..……8
2.1 前言 ……………………………………………………..….…8
2.2線型電動機之詮釋與分類………………………………….….8
2.3 線型直流馬達之基礎...............................................................12
2.3.1 線型直流馬達(LDM)之特點…………………….…....12
2.3.2 線型直流馬達(LDM)之推動原理…………….………12
2.3.3 線型直流馬達(LDM)之推力與推力常數……….……14
2.3.4 線型直流馬達(LDM)之推進速度…………….………15
2.3.5 線型直流馬達(LDM)之效率…………………….……16
2.4 線型無刷直流馬達(BLDM)之介紹……………………….…17
2.5 三相式線型無刷直流馬達………………………….…..……17
2.6 二相式線型無刷直流馬達……………....……………...……20
2.6.1二相式線型無刷直流馬達之數學模式.………….…….21
2.6.2推進速度的計算…………………….………….…….....24
2.6.3 阻尼係數與摩差係數的計算……………………......…24
2.6.4 開關數的計算……………………..……………………26
第三章 線型電動機之設計……………………………………………28
3.1 前言…………………………………………………………...28
3.2 線型電動機之結構群群群群組態分類……………………………..….28
3.2.1單側激磁構造型態…………………………….……....28
3.2.2雙側激磁構造型態…………………………………….29
3.2.3包圍式激磁構造型態………………………………….30
3.2.4多側式激磁構造型態………………………….……....30
3.3 線型電動機之構成要素……………………………………...31
3.3.1激磁磁鐵(永久磁鐵)…………………………………...31
3.3.2 電樞線圈………………………………………………33
3.3.3 電子式換相電路………………………………………35
3.4 線型電動機之機構設計…………………………………….38
3.4.1 線型電動機之設計步驟………………………...…….38
3.4.2 永久磁鐵材料的選擇.......….….……….....…..........…40
3.4.3氣隙的選擇........................….….……….....…..........…40
3.5 線型電動機之架構設計.........................................................41
3.5.1 兩相式之線型電動機架構............................................41
3.5.2 永久磁鐵的擺放方式…………………………....……42
3.5.3 霍爾IC的擺放方式…………………………....……..42
3.6 線型電動機之多段式複合磁碟機設計分區供電...........…..43
3.7線型電動機之群群群群群組成及運轉敘述.........................................…..48
第四章 系統設計與探討………….....................…………………..….53
4.1 前言……………………………………………………...……53
4.2 電子式換相電路…………………………………...…………55
4.2.1 合成電路……………..………………………………..55
4.2.2 狀態顯示電路………………..………………………..57
4.3 線型電動機之驅動信號控制器...............................................59
4.3.1 eZdspLF2407之簡介......................................................59
4.3.2 eZdspLF2407之應用......................................................61
4-4功率級驅動電路........................................................................64
4-5 輔助電源...................................................................................67
4-6電磁干擾(EMI)濾波器..............................................................71
4.6.1 前言................................................................................71
4.6.2 雜訊群群群群群組成及其來源........................................................71
4.6.3 濾波器之設計................................................................72
4.6.4濾波器之架構.................................................................73
第五章 實驗結果與驗證........................................................................76
5.1 霍爾IC及控制訊號量測.........................................................76
5-2 驅動電路之信號量測...............................................................79
5-3 正反轉測試...............................................................................81
5-4 加載測試...................................................................................82
5-5 阻尼係數與摩擦係數...............................................................87
5-6 磁通密度之量測.......................................................................88
5-7 輸出功率之模擬與實測...........................................................89
5-8 永久磁鐵測試...........................................................................91
5-9 多段式複合磁碟機測試...........................................................92
5-10電磁干擾(EMI)量測.................................................................94
第六章 結論.............................................................................................97
參考文獻..................................................................................................99

圖 目 錄
圖1-1論文架構……….………………………………………………….4
圖1-2線型電動機之結構示意圖…….…………….....……………..….6
圖2-1 線型馬達分類圖…………………………………...………...…10
圖2-2 推力產生原理………………………………………...……...…13
圖2-3 弗來明左手定則………………………………………………..13
圖2-4 三相式線型無刷直流馬達之動作原理圖…………………..…18
圖 2-5 正弦波PWM調變之轉換訊號…………..…….…………...…..20
圖2-6 二相式線型無刷直流馬達之架構圖…………………………..21
圖2-7 二相式線型無刷直流馬達之驅動波形………………….....….21
圖2-8 參數電路圖………………….................................................….21
圖3-1 單側激磁構造型態之線型電機……………….…………..…...29
圖3-2 雙側激磁構造型態之線型電機…………………………...…...30
圖3-3 市售之霍爾感測元件……………………………………..……35
圖3-4 霍爾感測元件之感應原理………………………………..……36
圖3-5 霍爾IC之磁通密度與電壓輸出…………………………..…..37
圖3-6 整體架構示意圖…………………………………………...…...38
圖3-7 線型電機之推進部實體圖……………………………………..39
圖3-8 線型電機之實體圖………………….………………………….39
圖3-9 兩相式之線型電機架構…………………………………...….. 41
圖3-10 分段式複合磁碟機之編碼電路圖………………………...….45
圖3-11 分段式複合磁碟機之編碼電路實體圖………………….…...46
圖3-12 分段式複合磁碟機之架構圖………………………….......….46
圖3-13 分段式複合磁碟機之示意圖…………………………......…..47
圖3-14 線型電動機群群群群群組成圖……………………………………...…….48
圖3-15 霍爾IC之狀態示意圖……………………….………….……49
圖3-16 霍爾IC之信號合成狀態圖………………….…………….…49
圖3-17 編碼電路示意圖………………………………………...….…50
圖3-18 邏輯碼狀態圖……………………………………………..…..50
圖3-19 AB相線圈信號狀態圖………………………………...…...….51
圖4-1 系統架構圖…………………………………………...…...……54
圖4-2 霍爾IC訊號合成硬體示意圖…………………………..……..57
圖4-3 霍爾IC訊號合成電路之實體圖…………………………..…..57
圖4-4 狀態顯示電路之電路圖………………………………......……58
圖4-5 狀態顯示電路之電路實體圖……………………………..……58
圖4-6 eZdspTMLF2407之群群群群組態方塊圖………………………………..59
圖4-7 eZdspTMLF2407之PCB外觀圖……………………………….60
圖4-8 軟體流程圖……………………………………………...…...…61
圖4-9 分段流程圖………………………………………………..……62
圖4-10 光耦合器驅動電路…………………………………...…….…64
圖4-11 光耦合器驅動電路之實體圖…………………………..……..65
圖4-12 光耦合器之輸出波形…………………………………......…..65
圖4-13 單晶切換式驅動電路……………………………………..…..66
圖4-14 單晶切換式驅動電路之實體圖…..……………………..…….66
圖4-15輔助電源電路架構………………….…………..………….…..67
圖4-16 電源供應裝置之分類…………………...………….....…...…..68
圖4-17 RCC架構之輔助電源供應器實體圖……….……………..…..70
圖4-18共模電流和差模電流之關係......................................................72
圖4-19 共模濾波器之示意圖................................................................73
圖4-20 差模濾波器之示意圖................................................................73
圖4-21 EMI濾波器之實際電路圖.........................................................74
圖4-22 EMI 濾波器之實體圖................................................................74
圖5-1 霍爾IC之輸出波形………………………………………..…..77
圖5-2 霍爾IC合成訊號………………………………………..……..77
圖5-3 DSP之輸出訊號…………………………………………......….78
圖5-4 光耦合器之驅動信號輸出波形……………………………..…79
圖5-5功率開關之切換波形……………………………………..…..…80
圖5-6 線型電機之正反轉量測…………………………….…….……81
圖5-7 線型電機之速度圖(輸入電壓Vcc=80V)..……………..………83
圖5-8 線型電機速度曲線圖(輸入電壓Vcc=80V)…..………………..84
圖5-9 線型電機之速度圖(輸入電壓Vcc=90V)…................................84
圖5-10 線型電機速度曲線圖(輸入電壓Vcc=90V)…………………..85
圖5-11 線型電機之速度圖(輸入電壓Vcc=100V)…..………….…….86
圖5-12 線型電機速度曲線圖(輸入電壓Vcc=100V)…………………87
圖5-13 阻尼係數與摩擦係數曲線圖…………………………......…..88
圖5-14 磁通密度之曲線圖……………………………………...….....89
圖5-15 輸出功率模擬曲線圖……………………………...…...……..90
圖5-16 永久磁鐵擺放測試之電流波形_1................…………………91
圖5-17 永久磁鐵擺放測試之電流波形_2….........………...…………92
圖5-18 多段複合磁碟機之開關波形……............…….……..….……93
圖5-19 多段複合磁碟機之開關波形局部放大........................………93
圖5-20 電磁干擾(EMI)量測架構圖......................................................94
圖5-21 電磁干擾之電源線測試結果…………………………………95
圖5-22 電磁干擾之中性線測試結果…………………………...….....96
表 目 錄
表3-1永久磁鐵的總類與特色……………………………………..…..32
表3-2線型電機之永磁材料分類………………………………………33
表3-3漆包線的種類與特微………………………………………...….34
表3-4 SN74148真直表………………………………….……….......…44
表3-5實際使用之真直表........................................................................45
表3-6多段式複合磁碟機之時序圖……………….…………………...45
表4-1 霍爾IC訊號時序表…………………………………………….56
表4-2 邏輯閘AND真直表.....................................................................56
表5-1 線型電機速度數據(輸入電壓Vcc=80V) (單位:cm/sec)………83
表5-2 線型電機速度數據(輸入電壓Vcc=90V) (單位:cm/sec)..…….85
表5-3 線型電機速度數據(輸入電壓Vcc=100V) (單位:cm/sec).…....86
表5-4 阻尼係數與摩擦係數實際值…………………………………..87
表5-5 磁通密度量測值……………………………………………..…88
表5-6 輸出功率模擬值…………………………….……………….…89
表5-7 輸出功率實際值(單位:W)…………………………………..…90
參考文獻
[1]S. M. Jang, D .J. You, S .H. Lee, H. W. Cho and W. B. Jang, “Design and analysis of three types for permanent magnet linear synchronous machine,” IEEE Trans. on Magnetics, Nov., 2003 pp.31-34.
[2]E. C. Shaffer and C. A. Gross, “Methods for Determining Linear Synchronous Machine Parameters,” IEEE Trans. on Magnetics, March, 1994, pp.411-415.
[3]J. F. Eastham, M. J. Balchin, P. C. Coles and D. Rodger, ” Comparison of short primary linear machines for high speed maglev vehicles,”, IEEE Trans. on Magnetics, Sep., 1987, pp.2338-2343.
[4]Z. Deng, I. Boldea and S. Nasar,” Fields in permanent magnet linear synchronous machines,” IEEE Trans. on Magnetics, Mar., 1986, pp.107-112.
[5]Z. Deng, I. Boldea and S. Nasar, “Forces and parameters of permanent magnet linear synchronous machines,” IEEE Trans. on Magnetics, Jan., 1987 , pp.305-309.
[6]C. T. Liu, J. L. Kuo and G. S. Wu, “A generalized 3-D dynamic modelling for transverse flux homopolar linear machines based on statistical saliency-effect superposition method,” IEEE Trans. on Energy Conversion, Dec., 1993, pp. 739-749.
[7]C. T. Liu and J. L. Kuo, “Transient analyses of transverse flux homopolar linear machines with unified prototype,” IEEE Trans. on Energy Conversion, June, 1994, pp. 366-375.
[8]C. T. Liu and J. L. Kuo, “Improvements on transient characteristics of transverse flux homopolar linear machines using artificial knowledge-based strategy,” IEEE Trans. on Energy Conversion, June, 1995, pp. 275-285.
[9]C. T. Liu and J. L. Kuo, “A refinement on transverse flux homopolar linear machine system modelling by periodic convolution technique,” IEEE Trans. on Magnetics, Nov., 1993, pp. 2959-2961.
[10]C. T. Liu and J. L. Kuo, “Experimental investigation and 3-D modeling of linear variable reluctance machine with magnetic-flux decoupled windings,” IEEE Trans. on Magnetics, Nov., 1994, pp. 4737-4739.
[11]C. T. Liu and J. L. Kuo, “Fast 3-D magnetic field analysis of transverse flux linear reluctance propulsion machine by Fourier projection method,” IEEE Trans. on Magnetic, Nov., 1995, pp. 4223-4225.
[12]C. T. Liu, J. L. Kuo, L. F. Chen, Y. J. Lee, C. T. Leu and Y. N. Chen, “Interaction force analysis of transverse flux linear switched reluctance machine by Fourier projection method,” IEEE Trans. on Energy Conversion, Mar., 1996, pp. 62-69.
[13]J. L. Kuo, Z. S. Chang, J. D. Lee and P. H. Lee, “Contactless Self-Resonant Induced Movable Converter for the Linear Synchronous Machine,” IEEE Trans. on Power Electronics , Oct., 2002, pp. 47-52.
[14]J. L. Kuo, Z. S. Chang, J. D. Lee and P. H. Lee, “Analysis and Design of Contactless Self-Resonant Induced Movable Chopper for the Linear Synchronous Machine,” IEEE Trans. on Industry Applications , Oct., 2002, pp. 182-187.
[15]T. Yoshimura, H. J. Kim, M. Watada, S. Torii and D. Ebihara, “Analysis of the Reduction of Detent Force in a Permanent Magnet Linear Synchronous Motor,” IEEE Trans. on magnetics, Nov., 1995, pp.3728-3730.
[16]J. R. Wood, “Taking Account of Output Resistance and Crossover Frequency in Closed Loop Designed,” POWERCON 10, Mar., 1983, pp.D4.1-D4.16.
[17]C. C. Hwang, “Design of High Power Density and High Efficiency Compound Motors,” NSC 88-2213-E-035-030, Final Report of the NSC Research Project, Dec., 1999.
[18]I. L Kosow, Electric Machinery and Transformers, Prentice–Hall Inc., 1991, pp. 385–399.
[19]S. A. Nasar and I. Boldea , Linear Motion Electric Machines, John Wiley, 1976.
[20]J. Lucidarme, A. Amouri and M. Poloujadoff, “Optimum Design of Longitudinal Field Variable Reluctance Motors–Application to High Performance Actuators,” IEEE Trans. on Energy Conversion, Sept., 1993, pp.1305–1310.
[21]許中平/黃煌嘉編譯﹐線型伺服電動機﹐全華出版社﹐民78。
[22]孫清華編譯﹐最新無刷直流馬達﹐全華出版社﹐民90。
[23]K. H. Park, T. S. Kim, S. C. Ahn, and D. S. Hyun, “Speed Control of High-Performance Brushless DC Motor Drives by Load Torque Estimation,” in IEEE Power Electronics Specialist Conf. Rec., Vol.4, June., 2003, pp 1677-1681.
[24]J. U. Chu, I. H. Moon, G. W. Choi, J. C. Ryu, and M. S. Mun, “Design of BLDC motor controller for electric power wheelchair,” in IEEE Mechatronics Conf. Rec., June.,2004, pp 92-97.
[25]張英彬編著﹐電力電子學﹐高立出版社﹐民86。
[26]江炫樟編譯﹐電力電子學﹐全華出版社﹐民90。
[27]張立/林清一 編著﹐現代電力電子技術﹐全華出版社﹐民87。
[28]L. H. Dixon, “Switch Power Supply Topology Review,” Unitrode Power Supply Design Seminar, Power Circuit Session, Dec., 1997, pp. 1.1-1.12.
[29]D. Dalal, “A Unique Four Quadrant Fly-back Converter,” Unitrode Power Supply Design Seminar, Power Circuit Session, Dec., 1997, pp. 5.1-5.15.
[30]J. Walker, “Four Quadrant Amplifier Based on the Fly-back Topology,” APEC '95, 1995, pp. 947-951.
[31]L. H. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Seminar SEM700, 1990, pp. U.140-U.143.
[32]卓聖鵬﹐EMC的基礎和實踐﹐全華出版社﹐民87。
[33]白中和﹐電磁雜訊問題與對策技術﹐全華出版社﹐民88。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top