跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊佑
研究生(外文):Jun-Yu Chen
論文名稱:光基礎高斯脈衝在超寬頻無線系統之研究
論文名稱(外文):Study of the Optically Based Gaussian Impulse for Ultra-Wideband Wireless System
指導教授:林炆標
指導教授(外文):Wen-Piao Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:56
中文關鍵詞:高斯單週脈衝超寬頻增益開關式Fabry-Perot雷射二極體微波微分器
外文關鍵詞:Gaussian monocycle pulseUWBgain-switched FPLDmicrowave differentiator
相關次數:
  • 被引用被引用:1
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超寬頻(Ultra-WideBand,UWB)無線通訊是近來在無線通信領域中,受大家所注意的焦點之一。它在行動傳輸上不僅提供高傳輸速率,而且更可應用在家電產品上,如:家庭影音娛樂、數位電視、個人電腦或是個人數位助理等,做為其溝通傳遞訊息用並能與其他現有通信系統並存,儼然成為無線通訊領域中的新寵兒。然而超寬頻無線通訊基本都以電子式架構來產生發送的脈衝,但以電子式架構卻不易產生如此超寬頻的脈衝,而由於光信號為高頻率的信號又有極寬的頻寬,故光子式架構產生超寬頻的脈衝比電子式架構來的容易,因此本論文提出一嶄新且以光為基礎架構產生高斯單週脈衝(Gaussian Monocycle pulse)之超寬頻無線系統。此架構由一增益開關式Fabry-Perot雷射二極體、可調式濾波器、摻鉺光纖放大器(EDFA)及微波微分器所組成,產生的脈衝信號能提供幾個GHz頻寬以傳送高速資料。實驗和分析結果證明,所提議的架構能產生一高品質高斯單週脈衝序列以應用於未來高速傳輸率超寬頻無線系統上。
In recently Ultra-WideBand (UWB) wireless system has fixed everyone’s eyes in the field of wireless communication. Not only it provides high-data-rate in mobile communication, but also be applied in electrical fitting, which could be employed in communication and message delivered such as home-vedio-entertainment, digital TV, personal computer and personal-digital-assistant and so on. These devices can work together with the other original communication systems, just like a new favor in the field of wireless communication. In general UWB wireless system generates output pulses with electronic structure. But the electronic structure is not easy to generate so wide pulses. However the optical signal can provide a greatly wide bandwidth, the UWB pulses are easier to generate by the optical devices than to generate by the electronic devices. In this paper, we propose a new scheme to generate Gaussian monocycle pulse signals for UWB wireless systems, which is composed of a gain-switched Fabry-Perot laser diode, tunable filter, Er+3-doped fiber amplifier and a microwave differentiator. The generated impulse signal can provide several GHz bandwidths for the transmission of high-bit-rate data. The experimental and analytical results demonstrate that the proposed scheme can achieve a good Gaussian monocycle pulse trains for the applications of future high-bit-rate UWB wireless systems.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法與目的 2
1.3 論文架構 4
第二章 超寬頻無線系統 5
2.1 背景 5
2.2 超寬頻的定義 5
2.3 超寬頻無線技術運用 8
2.3.1 脈衝無線電技術 8
2.3.2 多頻帶系統 10
2.3.3 超寬頻系統相關討論 10
2.4 電子式超寬頻脈衝無線系統架構 11
2.5 高斯脈衝產生技術 12
2.5.1 雷射二極體的特性 12
2.5.2 增益開關 13
2.5.3 高斯曲線 15
2.5.4 高斯單週脈衝信號 18
第三章 光基礎高斯單週脈衝產生器系統架構 23
3.1 鎖模 24
3.2 主動鎖模 25
3.2.1自回饋注入源增益開關雷射 25
3.2.2 自回饋注入源增益開關雷射模擬 26
3.2.3 外部注入源增益開關雷射 29
3.2.4 自發性發射回授增益開關雷射架構 30
3.3 模擬光基礎高斯單週脈衝產生器系統及分析 31
第四章 微波微分器 36
4.1原理 36
4.2製作方法 37
4.3模擬與量測 39
第五章 系統建立與量測 44
5.1高斯單週脈衝信號產生系統之建立與量測 44
5.1.1 自發性發射回授增益雷射測試 45
5.1.2 高斯單週脈衝信號產生與測試 47
5.2系統載送資料之量測 50
第六章 結論 52
6.1 成果討論 52
6.2 未來展望 52
參考文獻 54
[1] D. Porcine, P. R., W. H., “Ultra wideband radio technology : potential and challenges ahead,” IEEE Communications Magazine, pp.66-74, July 2003.
[2] IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a)[Online].Available:http://ww.ieee802.org/15/pub/TG3a.html.
[3] L. P. Barry, R. Dowd, J. Debeau, and R. Boittin, “Tunable transform limited pulse generation using self-injection locking of an FP laser,” IEEE Photon. Technol. Lett., vol. 5, pp. 1132-1134, Oct. 1993.
[4] M. Schell, W. Utz, D. Huhse, J. Kassner, and D. Bimberg, “Low jitter single mode pulse generation by a self-seeded, gain-switched Fabry-Perot semiconductor laser,” Appl. Phys. Lett., vol. 65, pp. 3045-3047, 1994.
[5] L.P. Barry, P. Anandarajah, and A. Kaszubowska, “Optical Pulse Generation at Frequencies up to 20GHz Using External-Injection Seeding of a Gain-Switched Commercial Fabry-Perot Laser,” IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 1014-1016, Sep. 2001.
[6] K. K. Chow, C. Shu, and H. F. Liu, “Low power optical control of period doubling in injection-seeded Fabry-Perot laser diode,” Electron. Lett., vol. 37, no. 7, pp. 429-431, Mar. 2001.
[7] Peng-Chun Peng, Wei-Ren Peng, Jia-He Lin, Wen-Piao Lin and Sien Chi, “Generation of wavelength-tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Perot laser diode,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2553-2555, Nov. 2004.
[8] C. Fowler, J. Entzminger, J. Vorum, “Report: Assessment of Ultra-Wideband(UWB) Technology”, OSD/DARPA Ultra-Wideband Radar Review Panel, R-6280, 1990.
[9] Federal Communication Commission, “In the matter of Revision of the Commission’ s Rules Regarding Ultra-wideband Transmission Systems, First Report and Order”, Adopted: February 14, 2002; released Apr. 22, 2002.
[10] G. R .Aiello, G. D. Rogerson, “Ultra-Wideband Wireless Systems”, IEEE Microwave Journal, vol. 4, Issue. 2, pp. 36-47, June 2003.
[11] Youngkyun Jeong, Sungyong Jung, Jin Liu, “A CMOS impulse generator for UWB wireless communication systems”, Circuits and Systems, 2004, ISCAS '04. Proceedings of the 2004 International Symposium, vol. 4, pp. 129-32, 23-26 May 2004.
[12] Gerd Keiser, Optical Fiber Communications, 3rd Ed., McGraw-Hill, New York, pp. 1-20, 2000.
[13] 邱子鈴, “射頻調制的二極體雷射特性研究,” 國立清華大學電機工程研究所碩士論文, 2002.
[14] Xiaomin Chen, Kiaei S., “Monocycle shapes for ultra wideband system”, IEEE International Symposium, vol. 1, pp. 597- 600, 26-29 May 2002.
[15] S.O.Kasap, “Optoelectronics and Photonics Principles”, Prentice Hall, pp. 141-143, 2001.
[16] E. P. Ippen, D. J. Eilenberger, and R. W. Dixon, “Picosecond Pulse Generation by Passive Mode Locking of Diode Lasers,” Appl. Phys. Lett., vol. 37, pp. 267-269, 1980.
[17] J. McInerney, L. Reekie, and D. J., “Bandwidth-Limited Picosecond Pulse Generation by Hybrid Mode-Locking in a RingCavity GaAlAs Laser,” Elentron. Lett., vol. 21, pp. 117-118, 1985.
[18] S. P. Li and K. T. Chan, “Actively Mode-Locked Erbium Fiber RingLaser Using a Fabry-Perot Semiconductor Modulator as Mode Lockerand Tunable Filter”, Appl. Phys. Lett., vol.74, p. 2737, 1999.
[19] Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett., vol. 9, pp. 1087–1089, Aug. 1997.
[20] M. Zhang, D. N. Wang, H. Li, W. Jin, and M. S. Demokan, “Tunable dual-wavelength picosecond pulse generation by the use of two Fabry-Perot laser diodes in an external injection seeding scheme,” IEEE Photon. Technol. Lett., vol. 14, pp. 92–94, Jan. 2002.
[21] Alan V. Oppenheim, Ronald W. Schafer, John R. Buck, “Discretetime signal processing (2nd Edition)”, Prentice Hall 1999-02-15.
[22] C.-W. Hsue, L.-C. Tsai and K.-L. Chen, “Implementation of first order and second order microwave differentiator,” IEEE J. Trans. on Microwave theory and technique, vol. 52, no. 5, pp. 14431447, May 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top