|
Chapter 1. [1] Gordon Moore was one of the founders of Intel and first pointed out this “law” around 1970. [2] Stanley Wolf, “Silicon Processing for the VLSI Era Volume 3: The Submicron MOSFET“, Lattice Press, pp. 205. [3] Ibrahim Ban, C.¨ Ozt¨urk, and Esin Kutlu Demirlioglu, “Suppression of Oxidation-Enhanced Boron Diffusion in Silicon by Carbon Implantation and Characterization of MOSFET’s with Carbon-Implanted Channels,” IEEE Trans Electron Devices, Vol. 44, No. 9, 1997. [4] P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, “Carbon incorporation in silicon for suppressing interstitial-enhanced boron diffusion,” Appl. Phys. Lett. , Vol. 66, pp. 1370, 1995. [5] Agilent “Agilent 4072B Advanced Parametric Tester Programming Reference for BASIC Users Manual”, pp. 33-125. [6] Hewlett-Packard (HP) “HP4156 Semiconductor Parameter Analyzer“ [7] Hewlett-Packard (HP) “HP-IB Command Reference”, pp. 21-34. [8] Hewlett-Packard (HP) “HP4282 LCR meter Manual”, pp. 57-106. [9] Lidia Dobrescu, M. Oetrov, D, Dobrescu, C. Ravariu “Threshold Voltage Extraction Methods for MOS Transistor”, IEEE Trans Electron Devices 2000, pp. 371-374. [10] Y.P. Tsividis, “Operation and Modeling of the MOS Transistor”, Mc Graw-Hill Book Company. New York 1987, pp. 155. [11] IBM, Infineon Technologies, Toshiba at DRAM Development Alliance, “Extending Trench DRAM Technology to 0.15um Ground rule and Beyond”, IEEE IEDM 99, pp. 33-35. [12] A. Chatterjee et al, “A Pass Transistor Design Methodology for 256Mbit DRAM and Beyond”, VLSI Technology Digest of Technical Papers 1994 Symposium, pp. 137-138. [13] Ja-Hao Chen, Shyh-Chyi Wong, and Yeong-Her Wang, Member, IEEE. “An Analytic Three-Terminal Band-to-Band Tunneling Model on GIDL in MOSFET” IEEE Trans Electron Devices, Vol. 48, No. 7, July 2001. [14] Y.Li et al, “Array Pass Transistor Design in Trench Cell for Gbit DRAM and Beyond”, VLSI Technology, Systems, and Applications, International Symposium on 1999, pp. 251-2
Chapter 2.
[1]T. Rupp, N. Chaudary, K. Dev, Y. Fukuzaki, J. Gambino, H. Ho, J. Iba, E. Ito, E. Kiewra, B. Kim, M. Maldei, T. Matsunaga, J. Ning, R. Rengarajan, A. Sudo, Y. Takegawa, D. Tobben, M. Weybright, G. Worth, R. Divakaruni, R. Srinivasan, J. Alsmeier, and G. Bronner, “Extending Trench DRAM Technology to 0.15µm Groundrule and Beyond,” IEDM Tech. Digest, pp. 33–36 (1999). [2]L. Nesbit, J. Alsmeier, B. Chen, J. DeBrosse, P. Fahey, M.Gall, J. Gambino, S. Gernhard, H. Ishiuchit, R. Kleinbenz, J. Mandelman, T. Mii, “A 0.6 μm2 256 Mb trench DRAM cell with self-aligned BuriEd STrap (BEST)” IEEE Trans Electron Devices, 1993 pp. 627-630. [3]Stanley Wolf, “Silicon Processing for the VLSI Era Volume 2” Lattice Press, Semiconductor Memory Process Integration, pp.587-619. [4]Yuri Karzhavin, “Shallow Trench Isolation Etch Process for 0.2μm Trench Capacitor DRAM technology”, IEEE Trans Electron Devices, 1999. pp. 239-245 [5]Stanley Wolf, “Silicon Processing for the VLSI Era Volume 2” Lattice Press, MOS Device and NMOS Process Integration, pp.298-324. [6]Vivek Rao, Jennifer Morgan, Wolfgang Hoesler, John Barden, Yuri Karzhavin, Peter Van Holt, Robert Petter, Heinrich Ollendorf, Kim hristensen, David Ricks, “Tungsten Silicide Gate Stack Optimization for 170-nm DRAM Technology”, IEEE Trans Electron Devices Conference Meeting, 1999. pp. 239-245. [7]H. Kang, K. Kim, Y. Shin, I. Park, K. Ko, C. Kim, K. Oh, S. Kim, C. Hong, K. Kwon, J. Yoo, Y. Kim, C. Lee, W. Paick, D. Suh, C. Park, S. Lee, S. Ahn, C. Hwang, and M. Lee, “Highly Manufacturable Process Technology for Reliable 256 Mbit and 1 Gbit DRAMs,” IEDM Tech. Digest, pp. 635–638 (1994). [8]HONG XIAO, “Introduction To Semiconductor Manufacturing Technology” Process Integration, pp.519-538. [9]C.Y. CHANG, S.M. SZE “ULSI TECHNOLOGY”, Process Integration. pp. 473-498. [10]J. Y. Chen, “ CMOS Devices and Technology for VLSI ”, Prentice-Hall, 1990. [11]K. Kim, C. G. Hwang, and J. G. Lee, "DRAM technology perspective for gigabit era," IEEE Trans. Electron Devices, vol. 45, pp. 598-608, 1998. [12]U. Gruening, C.J. Radens, J.A. Mandelman, A. Michaelis, M. Seitz, N. Arnold, D. Lea, D. Casarotto, A. Knorr, S. Halle, T.H. Ivers, L. Economikos, S. Kudelka, S. Rahn, H. Tews, H. Lee, R. Divakaruni, J.J. Welser, T. Furukawa, T.S. Kanarsky, J. Alsmeier, G.B. Bronner “A Novel Trench DRAM Cell with a VERtIcal Access Transistor and BuriEd STrap (VERI BEST) for 4Gb/16Gb”, IEEE Trans. Electron Devices, 1999 [13]K. Lee, B. Lee, J. Hoepfner, L. Economikos, C. Parks, C. Radens, J. Bernstein, and P. Kellerman, “Plasma Immersion Ion Implantation as an Alternative Deep Trench Buried-Plate Doping Technology,” Proceedings of the Thirteenth International Conference on Ion Implantation Technology, 2000, pp. 460-463. [14]“A trench transistor cross-point DRAM cell”, IEDM Technologies. Dig., pp. 714, 1985 [15]S. S. Iyer and H. L. Kalter, “Embedded DRAM Technology: Opportunities and Challenges,” IEEE Spectrum 36, 56-64 (1999). [16]D. Kenney, P. Parries, P. Pan, W. Tonti, W. Cote, S. Dash, P. Lorenz, W. Arden, R. Mohler, S. Roehl, A. Bryant, W. Haensch, B. Hoffman, M. Levy, A. J. Yu, and C. Zeller, “A Buried-Plate Trench Cell for 64-Mb DRAM,” IEEE Symposium on VLSI Technology, Digest of Technical Papers, 1992, pp. 14, 15. [17] Jongoh Kim, Member, IEEE, Taewoo Kim, Jaebeom Park, Woojin Kim, Byungseop Hong, and Gyuhan Yoon, “A Shallow Trench Isolation Using Nitric Oxide (NO)-Annealed Wall Oxide to Suppress Inverse Narrow Width Effect”, IEEE Trans Electron Devices, Vol. 21, NO. 12, 2000. [18]Daewon Ha, Changhyun Cho, Dongwon Shin, Gwan-Hyeob Koh, Tae-Young Chung, and Kinam Kim, “Anomalous Junction Leakage Current Induced by STI Dislocations and Its Impact on Dynamic Random Access Memory Devices”, IEEE Trans Electron Devices, Vol. 46, NO. 5, 1999. [19]H. Takato, H. Koike, T. Yoshida, and H. Ishiuchi, “Embedded DRAM Technology: Past, Present and Future,” Proceedings of the International Symposium on VLSI Technology, Systems, and Applications, 1999, pp. 239–242.
Chapter 3.
[1]B. S. S. Or, Leonard Forbes, Member, IEEE, H. Haddad, and W. Richling, “Annealing Effects of Carbon in n-Channel LDD MOSFET’s, “IEEE Trans Electron Devices, Vol. 12, NO. 11, 1991. [2]P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, “Carbon incorporation in silicon for suppressing interstitial-enhanced boron diffusion,” Appl. Phys. Lett. 66, pp. 1370 (1995). [3]J. Wong-Leung, J. S. Williams, and M. Petravi, “The influence of cavities and point defects on boron diffusion in silicon,” Applied Physics Letters May 11, 1998 Vol. 72, Issue 19, pp. 2418-2420. [4]Kim Christensen and Dennis M. Maher, “Effects of carbon implantation on generation lifetime in silicon,” Applied Physics Letters, Vol. 68, No. 4, 22 January 1996 [5]Ibrahim Ban, C.¨ Ozt¨urk, and Esin Kutlu Demirlioglu, “Suppression of Oxidation-Enhanced Boron Diffusion in Silicon by Carbon Implantation and Characterization of MOSFET’s with Carbon-Implanted Channels,” IEEE Trans Electron Devices, Vol. 44, NO. 9, 1997. pp. 1544-1551. [6]Satoshi Nishikawa, Akira Tanaka, and Tetsuo Yamaji, “Reduction of transient boron diffusion in preamorphized Si by carbon implantation,” Applied Physics Letters, Vol. 60, No. 18, 4 May 1992. [7]Stanley Wolf, “Silicon Processing for the VLSI Era Volume 3” Lattice Press, The Submicron MOSFET, pp.205-287. [8] Hiroshi Watanabe, Kazuhiro Shimizu, Yuji Takeuchi and Seiichi Aritome “Corner-Rounded Shallow Trench Isolation Technology to Reduce the Stress-Induced Tunnel Oxide Leakage Current for Highly Reliable Memories” IEEE Trans Electron Devices 1996, pp 834-836 [9]H. J. Osten, R. Barth, G. Fischer, B Heinemann, D. Knoll, G. Lippert, H. Rucker, P Schley, and W. Ropke, "Carbon-containing group IV heterostructures on Si: properties and device applications", Thin Solid Films 321, 11-14 (1998). [10]Olga H. Krafcsik, Gyorgy Vida, Istvan Pocsik, Katalin V. Josepovits and Peter Deak, ”Carbon Diffusion through SiO2 from a Hydrogenated Amorphous Carbon Layer and Accumulation at the SiO2 Si Interface,” Jpn. J. Appl. Phys. Vol. 40 (2001) pp.2197-2200. [11]H.-J. Gossmann, P. A. Stolk, D. J. Eaglesham, G. H. Gilmer, and J. M. Poate, "Diffusion of Si self-interstitials in the presence of carbon related interstitial traps," Electrochem. Soc. Proc. 96-4, 64 (1996). [12]P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, "Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon," J. Appl. Phys. 81, 6031 (1997). [13]J. M. Poate, D. J. Eaglesham, G. H. Gilmer, H.-J. Gossmann, M. Jaraiz, C. S. Rafferty, and P. A. Stolk, “Ion implantation and transient-enhanced diffusion,” IEEE Trans Electron Devices, pp. 77-80, 1995. [14]S. Nishikawa, and T. Yamaji, “Elimination of secondary defects in preamorphized Si by C+ implantation,” Appl. Phys. Lett., vol. 62, pp.303-305, 1993. [15]T. W. Simpson, R. D. Goldberg, and I. V. Mitchell, ” Suppression of dislocation formation in silicon by carbon implantation,” Appl. Phys. Lett. , Vol. 67, No. 19, 6 November 1995. [16]H.-J. Gossmann, P. A. Stolk, D. J. Eaglesham, G. H. Gilmer, and J. M. Poate, "Diffusion of Si self-interstitials in the presence of carbon related interstitial traps," Electrochem. Soc. Proc. 96-4, 64 (1996). [17]D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, and J. M. Poate, ” Implantation and transient B diffusion in Si: The source of the interstitials,” Appl. Phys. Lett., Vol. 65, No. 18, 31 October 1994. [18]Jarvis B. Jacobs and Dimitri Antoniadis, “Channel Profile Engineering for MOSFET's with 100 nm Channel Lengths,” IEEE Trans Electron Devices, Vol. 42, NO. 5, 1995.
Chapter 4.
[1] M. Chang et al, “Impact of Gate-Induced Drain Leakage on Retention Time Distribution of 256 Mbit DRAM With Negative wordline Bias”, IEEE Trans Electron Devices, Vol. 50, NO. 4, April 2003, pp. 1036-1041. [2] Takeshi Hamamoto et al, “On the Retention Time Distribution of Dynamic Random Access Memory (DRAM)”, IEEE Trans Electron Devices, Vol. 45, NO. 6, JUNE 1998, pp. 1300-1309. [3] A. Chatterjee et al, “A Pass Transistor Design Methodology for 256Mbit DRAM and Beyond”, VLSI Technology Digest of Technical Papers, 1994. pp. 137-138. [4] J. A. Mandelman et al, “Challenges and future directions for the scaling of dynamic random-access memory (DRAM)”, IBM. J. Res. & Dev. Vol. 46, No. 23, MAR/MAY 2002, pp. 187-212. [5] K.Saino et al, “Impact of Gate-Induced Drain Leakage Current on the Tail Distribution of DRAM Data Retention time”, IEEE Trans Electron Devices 2000, pp. 837-840. [6] Shuichi Ueno, “Scaling Guideline of DRAM Memory Cells for Maintaining the Retention time”, VLSI Technology Digest of Technical Papers, 2000. pp. 84-85. [7] A. Hiraiwa et al, “Local-field enhancement model of DRAM retention failure”, IEEE Trans Electron Devices 1998, pp. 157-160. [8] L. Nesbit et al, “A 0.6μm2 256MB Trench DRAM cell with Self-Aligned BuriEd Strap (BEST)”, IEEE Trans Electron Devices 1993, pp. 627-630. [9] R. W. Mann et al, “Ultralow-power SRAM technology”, IBM. J. Res. & Dev. Vol 47, NO. 5/6 Sep./Nov. 2003, pp. 553-566. [10] Stephen A Parke et al, “Design for Suppression of Gate-Induced Drain Leakage in LDD MOSFET’s Using a Quasi-Two-Dimensional Analytical Model”, IEEE Trans Electron Devices, Vol 39, NO. 7, JULY 1992, pp. 1694-1703. [11] Jeong-Hyong Yi, Student, IEEE, Sung-Kye Park, Young-June Park, Member, IEEE, and Hong Shick Min “Numerical Analysis of Deep-Trap Behaviors on Retention Time Distribution of DRAMs With Negative Wordline Bias”, IEEE Trans Electron Devices, Vol. 52, NO. 4, 2005 pp. 554-560.
|