跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/08 00:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊家誠
研究生(外文):Chia-Cheng Yang
論文名稱:256MbitDRAM良好的電性特性應用碳離子植入汲極端
論文名稱(外文):Excellent Electrical Characterization of 256Mbit DRAM with Carbon-Implanted Drain
指導教授:潘同明
指導教授(外文):Tung-Ming Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:106
中文關鍵詞:碳離子植入
外文關鍵詞:Carbon implant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現代積體電路工業的趨勢是閘極通道長度將不斷的減少,當通道長度小於某一個程度時,元件的短通道效應及反轉短通道效應所造成臨界電壓及飽和電流的偏移就越顯重要。本論文中,我們提出將碳離子植入DRAM 記憶體cell transistor汲極端的應用技術。在DRAM cell 電晶體的製程中有許多道的離子植入製程,例如: well、源極和汲極、源極和汲極halo、表面臨界電壓調整、接觸窗植入等等。從DRAM 記憶體的製程結構,源極和汲極端的halo植入是為抑制源極和汲極端穿隧效應。由於源極和汲極halo植入而造成DRAM cell元件的反轉短通道現象,而這種現象將會造成元件的臨界電壓上升及飽和電流的下降。換句話來說就是DRAM記憶體元件的效能下降,所以它會容易造成整個 DRAM cell bit的讀寫失敗或讀寫速度的下降。我們應用碳離子植入 DRAM cell 電晶體的汲極端,並且它可以改善這些問題。我們可以從一些資料得知,碳離子植入cell transistor 的汲極端可以抑制源極和汲極halo的硼離子擴散現象。所以在本論文中,我們將利用電性測試的方式來討論應用碳離子植入矽晶圓的一些電性效應,這包含了元件的臨界電壓、次臨界漏電、飽和電流、元件roll-off效應、閘極引發汲極的漏電及接面的漏電,並評估不同劑量的碳離子對元件的效應。我們也可以從 chip probe (CP) 良率測試的結果來獲得碳離子的植入可以改善提昇DRAM記憶體的良率,而良率的改善包含了資料保持及資料的讀寫,所以可從實驗中得知碳離子的植入確實能呈現良好的電性效應。
The decrease of gate channel length is a trend in modern ULSI in-dustry. As the gate channel length become smaller, short channel effect (SCE) and reverse short channel effect (RSCE) of DRAM cell transistor will cause the shift of threshold voltage (Vt) and the degradation of satu-rated drain current (Idsat). In this thesis, we have proposed carbon im-plantation into drain for application of DRAM cell transistor technology. There are many implantation processes in DRAM cell transistor. For example: well, source/drain, halo, surface voltage adjusting and contact implantation. Based on DRAM cell device structure, drain side has halo boron-fluoride (BF2) implantation to prevent punch-through. Due to drain halo implant, RSCE is caused on DRAM cell transistor. RSCE will lead to high threshold voltage (Vt) and low saturated drain current (Idsat) is. In other words, RSCE will also bring about MOSFET's performance degra-dation, and will easily lead to the failure of write-back failure easily. We have used carbon implantation into the drain of cell transistor to improve those issues. Different carbon dosage implanted into the drain of cell transistor will be discussed in this thesis and will investigate the impact of carbon dopant on the electrical properties of cell transistor. Boron diffu-sion, activation, and critical electrical parameters including threshold voltage (Vt), saturated drain current (Idsat), subthreshold swing (S.S), threshold voltage roll-off, gate-drain overlay capacitance (Cgd), gate in-duced drain leakage (GIDL) and junction leakage have been evaluated as a function of the carbon dosage from wafer electrical testing (WET) in-formation. Based on chip probe (CP) testing results, carbon implant can improve CP yield and it includes both data retention and short-write-back (SWB).
Abstracts....................................................vi

Chapter 1
Introduction................................................... 1
1.1 Background................................................. 1
1.2 Classical Methodology of Electrical Measurement............ 2
1.3 Electrical Test Methodology of DRAM Cell Transistor........ 3
1.4 Test Element Group (TEG) of Electrical Measurement......... 5

Chapter 2
A Introduction of DRAM Cell Transistor Process Flow........... 15
2.1 Introduction.............................................. 15
2.2 Active area (AA) of DRAM Cell Transistor Process Flow..... 16
2.3 Gate conductor (GC) of DRAM Cell Transistor Process Flow.. 17
2.4 Middle of Line (MOL) DRAM Cell Transistor Process Flow.... 20
2.5 Summary................................................... 23

Chapter 3
Electrical Characterization of Carbon Implanted Into Drain of DRAM Cell Transistor............................................... 38
3.1 Introduction.............................................. 38
3.2 Carbon Implement DRAM Cell Transistor Drain Side Process.. 38
3.3 The Dosage of Carbon Implantation on DRAM Cell Transistor Drain......................................................... 39
3.4 Electrical Analysis of DRAM Cell Transistor with Carbon Implanted Drain............................................... 40
3.5 Summary................................................... 45

Chapter 4
CP Analysis of Carbon Implanted Into Drain of Cell Transistor For 256Mb DRAM.................................................... 78
4.1 Introduction.............................................. 78
4.2 DRAM Chip Probe Testing Flow.............................. 79
4.3 DRAM Chip Probe Testing Construction...................... 79
4.4 Chip Probe (CP) Analysis of DRAM Device with Carbon Implant Drain......................................................... 81
4.5 Characterization of Single Die Analysis of DRAM Device with Carbon Implant Drain.......................................... 83
4.6 Summary................................................... 84

Chapter 5
Conclusions................................................... 105





List of tables


Table 2-1. DRAM cell transistor main manufacturing flow………….…29
Table 2-2. DRAM cell transistor implant table………………………….37
Table 3-1. The split tables of carbon dosage are shown (a) the first and (b) the second experiment...………………………………………51
Table 3-2. The electrical data of linear region are by different carbon dosage. (a) the first and (b) the second experiment………….. 52
Table 3-3. The electrical data of saturation region are by different carbon dosage (a) the first and (b) the second experiment……………56
Table 3-4. Body effect of corner threshold voltage is by different carbon dosage at saturation. (a) the first and (b) the second experiment…………………………………………………….59
Table 3-5. The performance of bit line contact (CB) is by different carbon dosage at saturation. (a) the first and (b) the second experiment…………………………………………………….65
Table 3-6. The performance of junction and gate-induced-drain leakage (GIDL) is by different carbon dosage. (a) the first and (b) the second experiment…………………………………………….69
Table 3-7. Roll-off effect of channel threshold voltage is by different carbon dosage and channel length. (a) the first and (b) the second experiment……………………………………………75
Table 4-1. Chip probe (CP) and failure bin are by different carbon dosage. (a) the first and (b) the second experiment………………….89
Table 4-2. Failure bit count (FBC) of SUB VT failure bin sweep VBB voltage by different carbon dosage…………………………101
Table 4-3. Failure bit count (FBC) of SUB VT failure bin sweep VNWLL voltage by different carbon dosage..…………………………102
Table 4-4. Failure bit count of SWB failure bin sweep VPP voltage by different carbon dosage…...…………………………………103
Table 4-5. Failure bit count (FBC) of SWB failure bin sweep twr by different carbon dosage……………………………………104
Chapter 1.
[1] Gordon Moore was one of the founders of Intel and first pointed out this “law” around 1970.
[2] Stanley Wolf, “Silicon Processing for the VLSI Era Volume 3: The Submicron MOSFET“, Lattice Press, pp. 205.
[3] Ibrahim Ban, C.¨ Ozt¨urk, and Esin Kutlu Demirlioglu, “Suppression of Oxidation-Enhanced Boron Diffusion in Silicon by Carbon Implantation and Characterization of MOSFET’s with Carbon-Implanted Channels,” IEEE Trans Electron Devices, Vol. 44, No. 9, 1997.
[4] P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, “Carbon incorporation in silicon for suppressing interstitial-enhanced boron diffusion,” Appl. Phys. Lett. , Vol. 66, pp. 1370, 1995.
[5] Agilent “Agilent 4072B Advanced Parametric Tester Programming Reference for BASIC Users Manual”, pp. 33-125.
[6] Hewlett-Packard (HP) “HP4156 Semiconductor Parameter Analyzer“
[7] Hewlett-Packard (HP) “HP-IB Command Reference”, pp. 21-34.
[8] Hewlett-Packard (HP) “HP4282 LCR meter Manual”, pp. 57-106.
[9] Lidia Dobrescu, M. Oetrov, D, Dobrescu, C. Ravariu “Threshold Voltage Extraction Methods for MOS Transistor”, IEEE Trans Electron Devices 2000, pp. 371-374.
[10] Y.P. Tsividis, “Operation and Modeling of the MOS Transistor”, Mc Graw-Hill Book Company. New York 1987, pp. 155.
[11] IBM, Infineon Technologies, Toshiba at DRAM Development Alliance, “Extending Trench DRAM Technology to 0.15um Ground rule and Beyond”, IEEE IEDM 99, pp. 33-35.
[12] A. Chatterjee et al, “A Pass Transistor Design Methodology for 256Mbit DRAM and Beyond”, VLSI Technology Digest of Technical Papers 1994 Symposium, pp. 137-138.
[13] Ja-Hao Chen, Shyh-Chyi Wong, and Yeong-Her Wang, Member, IEEE. “An Analytic Three-Terminal Band-to-Band Tunneling Model on GIDL in MOSFET” IEEE Trans Electron Devices, Vol. 48, No. 7, July 2001.
[14] Y.Li et al, “Array Pass Transistor Design in Trench Cell for Gbit DRAM and Beyond”, VLSI Technology, Systems, and Applications, International Symposium on 1999, pp. 251-2

Chapter 2.

[1]T. Rupp, N. Chaudary, K. Dev, Y. Fukuzaki, J. Gambino, H. Ho, J. Iba, E. Ito, E. Kiewra, B. Kim, M. Maldei, T. Matsunaga, J. Ning, R. Rengarajan, A. Sudo, Y. Takegawa, D. Tobben, M. Weybright, G. Worth, R. Divakaruni, R. Srinivasan, J. Alsmeier, and G. Bronner, “Extending Trench DRAM Technology to 0.15µm Groundrule and Beyond,” IEDM Tech. Digest, pp. 33–36 (1999).
[2]L. Nesbit, J. Alsmeier, B. Chen, J. DeBrosse, P. Fahey, M.Gall, J. Gambino, S. Gernhard, H. Ishiuchit, R. Kleinbenz, J. Mandelman, T. Mii, “A 0.6 μm2 256 Mb trench DRAM cell with self-aligned BuriEd STrap (BEST)” IEEE Trans Electron Devices, 1993 pp. 627-630.
[3]Stanley Wolf, “Silicon Processing for the VLSI Era Volume 2” Lattice Press, Semiconductor Memory Process Integration, pp.587-619.
[4]Yuri Karzhavin, “Shallow Trench Isolation Etch Process for 0.2μm Trench Capacitor DRAM technology”, IEEE Trans Electron Devices, 1999. pp. 239-245
[5]Stanley Wolf, “Silicon Processing for the VLSI Era Volume 2” Lattice Press, MOS Device and NMOS Process Integration, pp.298-324.
[6]Vivek Rao, Jennifer Morgan, Wolfgang Hoesler, John Barden, Yuri Karzhavin, Peter Van Holt, Robert Petter, Heinrich Ollendorf, Kim hristensen, David Ricks, “Tungsten Silicide Gate Stack Optimization for 170-nm DRAM Technology”, IEEE Trans Electron Devices Conference Meeting, 1999. pp. 239-245.
[7]H. Kang, K. Kim, Y. Shin, I. Park, K. Ko, C. Kim, K. Oh, S. Kim, C. Hong, K. Kwon, J. Yoo, Y. Kim, C. Lee, W. Paick, D. Suh, C. Park, S. Lee, S. Ahn, C. Hwang, and M. Lee, “Highly Manufacturable Process Technology for Reliable 256 Mbit and 1 Gbit DRAMs,” IEDM Tech. Digest, pp. 635–638 (1994).
[8]HONG XIAO, “Introduction To Semiconductor Manufacturing Technology” Process Integration, pp.519-538.
[9]C.Y. CHANG, S.M. SZE “ULSI TECHNOLOGY”, Process Integration. pp. 473-498.
[10]J. Y. Chen, “ CMOS Devices and Technology for VLSI ”, Prentice-Hall, 1990.
[11]K. Kim, C. G. Hwang, and J. G. Lee, "DRAM technology perspective for gigabit era," IEEE Trans. Electron Devices, vol. 45, pp. 598-608, 1998.
[12]U. Gruening, C.J. Radens, J.A. Mandelman, A. Michaelis, M. Seitz, N. Arnold, D. Lea, D. Casarotto, A. Knorr, S. Halle, T.H. Ivers, L. Economikos, S. Kudelka, S. Rahn, H. Tews, H. Lee, R. Divakaruni, J.J. Welser, T. Furukawa, T.S. Kanarsky, J. Alsmeier, G.B. Bronner “A Novel Trench DRAM Cell with a VERtIcal Access Transistor and BuriEd STrap (VERI BEST) for 4Gb/16Gb”, IEEE Trans. Electron Devices, 1999
[13]K. Lee, B. Lee, J. Hoepfner, L. Economikos, C. Parks, C. Radens, J. Bernstein, and P. Kellerman, “Plasma Immersion Ion Implantation as an Alternative Deep Trench Buried-Plate Doping Technology,” Proceedings of the Thirteenth International Conference on Ion Implantation Technology, 2000, pp. 460-463.
[14]“A trench transistor cross-point DRAM cell”, IEDM Technologies. Dig., pp. 714, 1985
[15]S. S. Iyer and H. L. Kalter, “Embedded DRAM Technology: Opportunities and Challenges,” IEEE Spectrum 36, 56-64 (1999).
[16]D. Kenney, P. Parries, P. Pan, W. Tonti, W. Cote, S. Dash, P. Lorenz, W. Arden, R. Mohler, S. Roehl, A. Bryant, W. Haensch, B. Hoffman, M. Levy, A. J. Yu, and C. Zeller, “A Buried-Plate Trench Cell for 64-Mb DRAM,” IEEE Symposium on VLSI Technology, Digest of Technical Papers, 1992, pp. 14, 15.
[17] Jongoh Kim, Member, IEEE, Taewoo Kim, Jaebeom Park, Woojin Kim, Byungseop Hong, and Gyuhan Yoon, “A Shallow Trench Isolation Using Nitric Oxide (NO)-Annealed Wall Oxide to Suppress Inverse Narrow Width Effect”, IEEE Trans Electron Devices, Vol. 21, NO. 12, 2000.
[18]Daewon Ha, Changhyun Cho, Dongwon Shin, Gwan-Hyeob Koh, Tae-Young Chung, and Kinam Kim, “Anomalous Junction Leakage Current Induced by STI Dislocations and Its Impact on Dynamic Random Access Memory Devices”, IEEE Trans Electron Devices, Vol. 46, NO. 5, 1999.
[19]H. Takato, H. Koike, T. Yoshida, and H. Ishiuchi, “Embedded DRAM Technology: Past, Present and Future,” Proceedings of the International Symposium on VLSI Technology, Systems, and Applications, 1999, pp. 239–242.

Chapter 3.


[1]B. S. S. Or, Leonard Forbes, Member, IEEE, H. Haddad, and W. Richling, “Annealing Effects of Carbon in n-Channel LDD MOSFET’s, “IEEE Trans Electron Devices, Vol. 12, NO. 11, 1991.
[2]P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, “Carbon incorporation in silicon for suppressing interstitial-enhanced boron diffusion,” Appl. Phys. Lett. 66, pp. 1370 (1995).
[3]J. Wong-Leung, J. S. Williams, and M. Petravi, “The influence of cavities and point defects on boron diffusion in silicon,” Applied Physics Letters May 11, 1998 Vol. 72, Issue 19, pp. 2418-2420.
[4]Kim Christensen and Dennis M. Maher, “Effects of carbon implantation on generation lifetime in silicon,” Applied Physics Letters, Vol. 68, No. 4, 22 January 1996
[5]Ibrahim Ban, C.¨ Ozt¨urk, and Esin Kutlu Demirlioglu, “Suppression of Oxidation-Enhanced Boron Diffusion in Silicon by Carbon Implantation and Characterization of MOSFET’s with Carbon-Implanted Channels,” IEEE Trans Electron Devices, Vol. 44, NO. 9, 1997. pp. 1544-1551.
[6]Satoshi Nishikawa, Akira Tanaka, and Tetsuo Yamaji, “Reduction of transient boron diffusion in preamorphized Si by carbon implantation,” Applied Physics Letters, Vol. 60, No. 18, 4 May 1992.
[7]Stanley Wolf, “Silicon Processing for the VLSI Era Volume 3” Lattice Press, The Submicron MOSFET, pp.205-287.
[8] Hiroshi Watanabe, Kazuhiro Shimizu, Yuji Takeuchi and Seiichi Aritome “Corner-Rounded Shallow Trench Isolation Technology to Reduce the Stress-Induced Tunnel Oxide Leakage Current for Highly Reliable Memories” IEEE Trans Electron Devices 1996, pp 834-836
[9]H. J. Osten, R. Barth, G. Fischer, B Heinemann, D. Knoll, G. Lippert,
H. Rucker, P Schley, and W. Ropke, "Carbon-containing group IV
heterostructures on Si: properties and device applications", Thin Solid
Films 321, 11-14 (1998).
[10]Olga H. Krafcsik, Gyorgy Vida, Istvan Pocsik, Katalin V. Josepovits and Peter Deak, ”Carbon Diffusion through SiO2 from a Hydrogenated Amorphous Carbon Layer and Accumulation at the SiO2 Si Interface,” Jpn. J. Appl. Phys. Vol. 40 (2001) pp.2197-2200.
[11]H.-J. Gossmann, P. A. Stolk, D. J. Eaglesham, G. H. Gilmer, and J. M. Poate, "Diffusion of Si self-interstitials in the presence of carbon related interstitial traps," Electrochem. Soc. Proc. 96-4, 64 (1996).
[12]P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, "Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon," J. Appl. Phys. 81, 6031 (1997).
[13]J. M. Poate, D. J. Eaglesham, G. H. Gilmer, H.-J. Gossmann, M. Jaraiz, C. S. Rafferty, and P. A. Stolk, “Ion implantation and transient-enhanced diffusion,” IEEE Trans Electron Devices, pp. 77-80, 1995.
[14]S. Nishikawa, and T. Yamaji, “Elimination of secondary defects in preamorphized Si by C+ implantation,” Appl. Phys. Lett., vol. 62, pp.303-305, 1993.
[15]T. W. Simpson, R. D. Goldberg, and I. V. Mitchell, ” Suppression of dislocation formation in silicon by carbon implantation,” Appl. Phys. Lett. , Vol. 67, No. 19, 6 November 1995.
[16]H.-J. Gossmann, P. A. Stolk, D. J. Eaglesham, G. H. Gilmer, and J.
M. Poate, "Diffusion of Si self-interstitials in the presence of carbon related interstitial traps," Electrochem. Soc. Proc. 96-4, 64 (1996).
[17]D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, and J. M. Poate, ” Implantation and transient B diffusion in Si: The source of the interstitials,” Appl. Phys. Lett., Vol. 65, No. 18, 31 October 1994.
[18]Jarvis B. Jacobs and Dimitri Antoniadis, “Channel Profile Engineering for MOSFET's with 100 nm Channel Lengths,” IEEE Trans Electron Devices, Vol. 42, NO. 5, 1995.

Chapter 4.


[1] M. Chang et al, “Impact of Gate-Induced Drain Leakage on Retention Time Distribution of 256 Mbit DRAM With Negative wordline Bias”, IEEE Trans Electron Devices, Vol. 50, NO. 4, April 2003, pp. 1036-1041.
[2] Takeshi Hamamoto et al, “On the Retention Time Distribution of Dynamic Random Access Memory (DRAM)”, IEEE Trans Electron Devices, Vol. 45, NO. 6, JUNE 1998, pp. 1300-1309.
[3] A. Chatterjee et al, “A Pass Transistor Design Methodology for 256Mbit DRAM and Beyond”, VLSI Technology Digest of Technical Papers, 1994. pp. 137-138.
[4] J. A. Mandelman et al, “Challenges and future directions for the scaling of dynamic random-access memory (DRAM)”, IBM. J. Res. & Dev. Vol. 46, No. 23, MAR/MAY 2002, pp. 187-212.
[5] K.Saino et al, “Impact of Gate-Induced Drain Leakage Current on the Tail Distribution of DRAM Data Retention time”, IEEE Trans Electron Devices 2000, pp. 837-840.
[6] Shuichi Ueno, “Scaling Guideline of DRAM Memory Cells for Maintaining the Retention time”, VLSI Technology Digest of Technical Papers, 2000. pp. 84-85.
[7] A. Hiraiwa et al, “Local-field enhancement model of DRAM retention failure”, IEEE Trans Electron Devices 1998, pp. 157-160.
[8] L. Nesbit et al, “A 0.6μm2 256MB Trench DRAM cell with Self-Aligned BuriEd Strap (BEST)”, IEEE Trans Electron Devices 1993, pp. 627-630.
[9] R. W. Mann et al, “Ultralow-power SRAM technology”, IBM. J. Res. & Dev. Vol 47, NO. 5/6 Sep./Nov. 2003, pp. 553-566.
[10] Stephen A Parke et al, “Design for Suppression of Gate-Induced Drain Leakage in LDD MOSFET’s Using a Quasi-Two-Dimensional Analytical Model”, IEEE Trans Electron Devices, Vol 39, NO. 7, JULY 1992, pp. 1694-1703.
[11] Jeong-Hyong Yi, Student, IEEE, Sung-Kye Park, Young-June Park, Member, IEEE, and Hong Shick Min “Numerical Analysis of Deep-Trap Behaviors on Retention Time Distribution of DRAMs With Negative Wordline Bias”, IEEE Trans Electron Devices, Vol. 52, NO. 4, 2005 pp. 554-560.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top