跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉全峰
研究生(外文):Chuan-Feng Yeh
論文名稱:多模干涉波導方向耦合器之研究
論文名稱(外文):A Study of Multimode Interference Waveguide with Directional Coupler
指導教授:李偉李偉引用關係
指導教授(外文):Wei-Yu Li
學位類別:碩士
校院名稱:中華技術學院
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:60
中文關鍵詞:向耦合器多模干涉多工器
外文關鍵詞:Direction CouplerMultimode Interfereencedemultiplexer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要針對設計與分析以多模干涉(MMI)和週期性區塊波導理論為
基礎之光被動元件方向耦合器得以應用於波長分波多工(WDM)的網路中。
為了縮短1.3/1.55μm 波長解多工器的元件長度並增加波長變動容忍
度,我們在多模干涉方向耦合器結構中放置一個週期性區塊波導。經模擬結
果顯示,波長1.55μm 的最低插入損耗為0.223dB,而波長1.3μm 的最低插
入損耗為0.156dB,此元件的長度變動容忍度是5μm。
藉由巧妙改變多模波導中部分區域的折射率,造成多模干涉機制同時存
在成對型與對稱型,如此將可以縮短N-點自我呈像的間距,因而有機會降低
整體元件的長度。在應用的設計實例中,我們加入週期性區塊波導達到折射
率的改變,有效改善輸出損失及調整分光,而且週期性區塊波導加上多模波
導也有使波長平坦化的特性,已提昇光學元件多變性。
The subject of this thesis on the design and analysis of multimode interference (MMI)
based optical passive devices for directional coupler.
We propose a novel 1.3/1.55-μm wavelength demultiplexer on the LiNbO3 material
system. A chirp grating is placed inside a MMI and periodically segmented waveguides
in a directional coupler structure to shorten the device length and increase wavength
tolerance. Simulation results show that a demultiplexer with an insertion loss of 0.156dB
and 0.223dB can be obtained at 1.55- and 1.3-μm wavelengths, respectively.
A new principle that can reduce the N-fold self-images interval of the MMI waveguide
is presented. By placing some partial index-modulation regions in this multimode
waveguide, a paired-interference mechanism and a symmetric-interference mechanism
will exist simultaneously. The formulas in this thesis provide a simple design option to
shorten the device length. The coupling characteristics have good tolerance on the
device length and wavelength variation. Design of the device was carried out and it is
showed that the device performance can be optimized by proper allocation of the
periodically segmented waveguides.
目錄
誌謝.......................................................... III
符號索引....................................................... IV
目錄........................................................... VI
第一章 序論..................................................... 1
1-1 簡介...................................................... 1
1-2 光通信技術的發展.......................................... 2
1-3 積體光學元件.............................................. 3
1-4 研究動機與目的............................................ 4
1-5 內容概述.................................................. 5
第二章 多模態干涉理論.......................................... 6
2-1 自呈像(Self-imaging)原理.................................. 6
2-2 傳波常數.................................................. 8
2-3 一般型干涉.............................................. 11
2-4 限制型干涉.............................................. 13
2-4-1 成對型干涉............................................ 14
2-4-2 對稱型干涉............................................ 15
第三章 週期性區塊波導理論..................................... 18
3-1 區塊波導的分析方法...................................... 18
3-1-1 光束傳播法............................................. 19
3-1-2 耦和模態分析.......................................... 21
3-2 週期性區塊波導設計...................................... 23
3-3 週期性區塊波導的特徵值.................................. 25
3-3-1 週期性區塊波導的特徵方程式............................ 26
3-3-2 3 維波導的特徵值....................................... 27
3-4 PSW 之應用............................................... 27
第四章 新型方向耦合器之設計與模擬............................. 34
4-2 方向耦合器的工作原理.................................... 34
4-3 研究動機................................................ 35
4-4 傳統的方向耦合器........................................ 36
4-4-1 加入PSW 的方向耦合器................................... 38
4-4-2 加入PSW 和MMI 的方向耦合器............................. 39
第五章 結論與未來發展......................................... 52
參考文獻....................................................... 55
Hiroshi Nishihara, Masamitsu Haruna, and Toshiaki Suhara : Optical
Integrated Circuits 1987
[2] O. Mikami, and S. Zembutsu, “Coupling-length adjustment for and
optical directional coupler as a 2×2 switch”, Appl. Phys. L etters,
vol. 35, pp.2321-2325,Dec. 1981.
[3] Rics, R.R., J.D. Zino, D.A. Bryan, E.A. Dalke and W.R. Reed,
“Multiwavelength monolithic integrated fiber-optic terminal”,
Proc. Soc. Photo-Optical Instr. Eng., vol. 176, pp. 133,1979.
[4] Takada, K.; Abe, M.; Hida, Y.; Shibata, T.; Ishii, M.; Himeno, A.;
Okamoto, K. “Fabrication of 2 GHz-spaced 16-channel
arrayed-waveguide grating demultiplexer for optical frequency
monitoring applications.” Electronics Letters, vol. 36,pp.
1643 –1644. Sept. 2000
[5] T. Fujino, K. Sasaki and K. Marumoto, “X-ray mask fabrication
process using Cr mask and ITO stopper in the dry etch of W
56
absorber”, Jpn. J. Appl. Phys., vol. 31, pp. 4086-4090, Dec. 1992.
[6] M.H. Lee, H.J. Lee, S.G. Han, H.Y. Kim, K.H. Kim, Y.H. Won, S.Y.
Kang, “Fabrication and characterization of and electro-optic
polymer waveguide modulator for photonic applications”, Thin
Solid Films, vol. 303, pp. 287-291 June 1996.
[7] Y. Bourbin, A. Enard, R. Blondeau, M. Razeghi, D. Rondi, M.
Papuchon, B. De Cremoux, “Electro-optical modulators using novel
buried waveguides in GaInAsP/InP material. ” Electronics Letters,
vol. 22, pp. 120-130 1999.
[8] R.A.Steinberg, T.G.Giallorenzi, R. G.Priest, “Polarization
insensitive integrated-optical switches: a new electrode design”,
Appl. Opt., vol 16 ,Aug. 1977.
[9] A. Morand, C. Sanchez-Perez, P. Benech, S. Tedjini, D. Bose,
“Integrated optical waveguide polarizer on glass with a
birefringent polymer overlay” IEEE Photonics Technology Letters,
vol.10 Issue: 11, pp. 1599 –1601. 1998,
[10] R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “Waveguide
beam splitters and recombiners based on multimode propagation
phenomena,” Opt. Lett., vol. 17, pp. 991-993, 1992.
[11] H. F. Talbot, “Facts relating to optical science No. IV, ”London,
Edinburgh Philosophical Mag.. J. Sci., Vol. 9, pp. 401-407,
Dec.1836
[12] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode
interference devices based on self-imaging: principles and
57
applications,” J. Lightwave Technol., vol. 13, pp. 615-627, 1995.
[13] O. Bryngdahl, “Image formation using self-imaging techniques,”
J. Opt. Soc. Amer., vol. 63, pp. 416-418, 1973.
[14] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar
optical waveguides,” Appl. Phys. Lett., vol. 27, pp. 337-339,
1975.
[15] R. Ulrich and T. Kamiya, “Resolution of self-images in planar
optical waveguides,” J. Opt. Soc. Amer., vol. 68, pp. 583-592,
1978.
[16] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging
properties in N ´N multimode interference couplers including phase
relations,” Appl. Opt., vol. 33, pp. 3905-3911, 1994.
[17] R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “Waveguide
beam splitters and recombiners based on multimode propagation
phenomena,” Opt. Lett., vol. 17, pp. 991-993, 1992.
[18] R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “A novel
waveguide Mach-Zehnder interferometer based on multimode
interference phenomena,” Opt. Commun., vol. 110, pp. 410-424,
1994.
[19] J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. Van der
Poel, “Balanced phase matching in segmented KTiOPO,
wave-guides,’’ Appl. Phys. Lett., vol. 56, pp. 1725-1727, 1990.
[20] C. J. Van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak,
“Efficient type I blue second-harmonic generation in
periodically segmented KTiOPO, waveguides,” Appl. Phys. Lett.,
vol. 57, pp.125-130 1992.
[21] J. Webjorn, F. Laurell, and G. Arvidsson, “Fabrication of
periodi-cally domain-inverted channel waveguides in lithium
niobate for second harmonic generation,” J . Lightwave Technol.,
vol. 7, pp.230-241 1990
[22] Z . Weissman, D. Nir, S. Ruschin, and A. Hardy, “Periodically
segmented waveguides-linear properties and applications,”
pre-sented at the Proc. of the 6th European Conference on
Integrated Optics, Neuchattel, Switzerland, May 1993.
[23] Z . Weissman and A. Hardy, “2-D mode tapering via tapered
waveguide segmentation,” Elecmn. Lett., vol. 28, pp. 1514-1516,
1992.
[24] L. Li and J. J. Burke, “Linear propagation characteristics of
periodically segmented waveguides,” Opt. Lett., vol. 17,
pp.125-200. 1995
[25] M. D. Feit and J. A. Fleck, “Computation of mode properties in
optical fiber waveguides by a propagating beam method,”Appl. Opt.
1993
[26] M. D. Feit and J. A. Fleck, “Mode properties of optical fibers
with lossy components by the propagating beam method,”Appl.
Opt.1993
[27] Y. Chung and N. Dagli, “An explicit finite difference BPM:
Application to semiconductor rib waveguide analysis,” presented
at Integrated Photonics Research, TUE 12-1, Washington, DC, 1990.
[28] D. Marcuse, Theory of Dielecm’c Optical Waveguide. New York:
Academic Press, Ch. 3. 1974,
[29] A. Yariv, Optical Electronics, 3rd ed. New York: Holt, Reinhart
and Winston, Ch. 13. 1985,
[30] D. Marcuse, Light Transmission Optics. New York Van-Nostrand
Reinhold Co., Ch. 5.1972,
[31] W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave
analysis of DFB and DBR lasers,” IEEE J . Quantum Electron., vol.
11, pp.185-195. 1990
[32] D. Yevick and B. Hermansson, “New approach to perturbed optical
waveguides,” Opt. Lett., vol. 11, pp. 103-105, 1986.
[33] P. Baldi, M. R. Shenoy, S. Nouh, M. P. De Micheli, and D. B.
Ostrowski, “Estimation of the extent and influence of
longitudinal diffusion on LiNbO3, proton exchanged segmented
stripe wave-guides,” preprint. vol. 30, pp. 120-140, 1995.
[34] R. C. Alferness and R. V. Schmidt, “Tunable optical waveguide
directional coupler filter,” Appl. Phys. Lett., vol. 33, pp.
161-163, 1978.
[35] T. Negami, H. Haga, and S. Yamamoto, “Guided wave optical
wavelength demultiplexer using an asymmetric Y junction,” Appl.
Phys. Lett., vol. 54, pp. 1080-1082, 1989.
[36] P. G. Suchoski and R. V. Ramaswamy, “Constant width
variable-index transition for efficient Ti: LiNbO3,
waveguide-fiber coupling,”J . Lightwave Technol., vol. LT-5, pp.
1246-1251, 1987.
[37] A. Mahapatra and J. M. Connors, “Thermal tapering of ion exchanged
channel guides in glass,” Opt. Lett., vol. 13, pp. 169-171, 1988.
[38] A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, and R. J. Deri,
“Dynamic etch mask technique for fabricating tapered
semiconductor optical waveguides and other structures,” Appl.
Phys. Lett., 1988.
[39] G. Muller, g. Wenger, L. Stoll, H. Westermeier, and D.
Seeberger,“Fabrication techniques for vertically tapered
InP/InGaAsP spot size transformers with very low loss,” presented
at the Proc. of the 6th European Conference on Integrated Optics,
Neuchattel, Switzerland, May 1993.
[40] E. Kapon and R. N. Thurston, “Multichannel waveguide junctions
for guided wave optics,” Appl. Phys. Lett., vol. 50, pp. 1710-1712,
1987.
[41] L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong,
“Demonstration of a small-form-factor WWDM transceiver module
for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett.,
vol. 14, pp. 702-704, 2002.
[42] Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, and N. Takato, “High
reliability optical splitters composed of silica-based planar
lightwave circuits,” J. Lightwave Technol., vol. 13, pp.
1728-1735, 1995.
[43] H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated
Circuit. New York: McGraw Hill, 1989.
[44] T. Tamir, Guides-Wave Optoelectronics, Springer-Verlag, 1988.
[45] H. Kogelnik and R. V. Schmidt, “Switched directional couplers
with alternating Dβ,” IEEE J. Quantum Electron., vol. QE-12, pp.
396-401, 1976.
[46] T. Wongcharoen, B. M. A. Rahman, and K. T. V. Grattan,
“Electro-optic directional coupler switch characterization,” J.
Lightwave Technol., vol. 15, pp. 377-382, 1997.
[47] R. C. Alferness and R. V. Schmidt, “Tunable optical waveguide
directional coupler filter,” Appl. Phys. Lett., vol. 33, pp.
161-163, 1978.
[48] M. Emanuel, O. G. Ramer, and R. Shlomo, “Relation between
normal-mode and coupled-mode analysis of parallel waveguides,”
IEEE J. Quantum Electron., vol. QE-20, pp. 1311-1319, 1984.
[49] A. J. Weierholt, A. R. Mickelson, and S. Neegard, “Eigenmode
analysis of symmetric parallel waveguide couplers,” IEEE J.
Quantum Electron., vol. QE-23, pp. 1689-1700, 1987.
[50] A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE
J. Quantum Electron., vol. QE-9, pp. 919-933, 1973.
[51] A. Hardy and W. Streifer, “Coupled mode theory of parallel
waveguides,” J. Lightwave Technol., vol. LT-3, pp. 1135-1146,
1985.
[52] N. Schulz, K. Bierwirth, F. Arndt, and U. Koster,
“Finite-difference method without spurious solutions for the
hybrid-mode analysis of diffused channel waveguides,” IEEE Trans.
Microwave Theory Tech., vol. MTT-38, pp .722-729, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top