跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊昆翰
研究生(外文):Kun Han Chuang
論文名稱:應用ISSR分子生物標誌探討生物品種間之種原變異性
論文名稱(外文):Evaluation of Genetic Variation of Biological Varieties with Inter Simple Sequence Repeat Markers
指導教授:陳卓昇陳卓昇引用關係蔡巨才
指導教授(外文):J. S. ChanC. T. Tsai
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:51
中文關鍵詞:甜橙
外文關鍵詞:ISSRhereditary similarityC. sinensis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在物種演化上,物種內的相互雜交往往造成遺傳特性上的差異,利用分析方便、穩定性高且易於推廣之ISSR分子標誌可進行物種的ISSR DNA指紋資料庫之建立及遺傳相似性分析。為了解種原的歧異性帶給生物遺傳演化上的影響,本實驗材料所選用的物種為芸香科(Rutaceae)中柑橘屬(Citrus)的甜橙(C. sinensis [L.] Osbeck),柑橘屬的果實內含有具抗癌、抗發炎效果的花青素及茄紅素,而其中的甜橙原產於印度東北部、中國西南部及緬甸地區,自十五世紀起便廣泛栽種於地中海地區,並經過變異選拔而衍生出不同性狀的後代栽培種,分成一般甜橙(Common Orange)、臍橙(Navel Orange)、血橙(Blood Orange)、無酸橙(Acidless Orange)等四類,由於外觀不易分辨,故選用來作為探討種原歧異的物種。
本試驗以20種甜橙的栽培種為材料,利用ISSR分子生物技術來探討物種的種原變異性,試驗結果顯示可產生多型性條帶訊號的核酸引子有8個,共可獲得51條條帶,平均每一引子可得條帶為6.4條。分析使用之8條核酸引子序列發現3’-anchored primer 之擴增效果較佳,以2個鹽基之簡單重複序列為主。所得之指紋分析資料經Jaccard’s遺傳相似係數運算,得各栽培種間的遺傳相似性介於17~72﹪之間,依據UPGMA進行群聚分析,繪製出樹狀分枝圖。若依遺傳距離0.40作為分群依據,可將所有樣品分成4個主要群組;品種差異性較大的cv. White Siletta及cv. Sanguinello個別成為獨立的第1,2群;第3群則為無酸橙類,但彼此間遺傳相似度都未超過0.45,具有較大的差異性;第4群包含樣品最多,酸度較高的一般甜橙及臍橙類的一群,臍橙類中以cv. Frost及cv. Washington這兩種臍橙的相似性最高,遺傳相似性達72%。
可呈現多型性條帶的8個甜橙ISS當中除了差異性較大的cv. Parson Brown, cv. Valencia, cv. Da Xue Gan之外,尚可再劃分出一般甜橙中含籽量較少及酸度較低的一群以及R引子全部為dinucleotides motif, 發現為(AC)n序列者佔6個。故(AC)n大量存在於甜橙基因內,值得進一步利用此microsatellite DNA序列,設計一系列的ISSR分析用引子,以進行更多的甜橙遺傳相關性之研究。藉由對種原之遺傳背景有深入的探討與了解,有助於我們在遺傳雜交組合的多樣性上的應用。
Concerning the evolution of species, the mutual hybridization among the biological species often causes the difference on the hereditary characteristic. Utilizing the convenient and stabile ISSR (inter simple sequence repeat)molecular maker can analyse hereditary similarity and make the setting-up of ISSR DNA fingerprint database among the biological species. In this study, we utilize Sweet Orange (C. sinensis [L.] Osbeck) for the experiment, the twenty cultivars of Sweet Orange can be divided into four groups, including Common Orange、Navel Orange、Blood Orange and Acidless Orange. Objectives were to assess genetic similarity among the cultivars. There were 51 polymorphic bands produced by 8 selected ISSR primers. The result of ISSR suggested that among the dinucleotides motifs, the poly(AC)n motif was more abundant and gave the largest number of polymorphism. Genetic similarity among the twenty cultivars was detected from 17% to 72% on ISSR marker basis. The cluster analysis of genetic similarity by UPGMA (Unweighted Pair-group Mean Arithmetic) revealed that four major groups could be recognized. The most interesting is the 4th group which includes most kinds can be observed that are mainly divied from two groups, one includes the Common Orange with fewer seeds and lower acidity and the other one includes the Navel Orange and Common Orange with high acidity. Among the Navel Orange, there is the highest similarity between cv. Frost and cv. Washington. Hereditary similarity value is up to 72% . Thus, it can be seen the quick and reliable molecular tool is useful in selecting the best parents and obtaining new combinations.
中 文 摘 要……………………………………………………..…...Ⅰ
英 文 摘 要…………………………………………………..……...Ⅲ
謝 誌………………………………………………………..………...Ⅴ
目錄……………………………………………………..……………Ⅵ
圖表目錄……………………………………………..……………….Ⅷ
第一章 緒論……………………………………………..………………1
第一節 研究緣起………………………………..…….………………...1
1-1 前言…………………………………………..……………………...1
1-2遺傳變異分析技術與研究…………………………………………..2
1-3 ISSR分子生物技術…………………………….…………………..4
第二節 研究題材與目的………………………………………………..6
2-1研究題材概述………………………………………………………..6
2-2研究目的……………………………………………………………10
第二章 材料與方法…………………………………..………………..12
一、 樣本收集……………………………….…………….……12
二、 材料準備………………….…………………………….…12
三、 葉片DNA萃取方法………………………………………12
四、 ISSR分子標誌分析……………………………………….14
五、 PCR擴增產物電泳分析…………………………………..15
六、 分子標誌統計分析……………………………………..…15
第三章 結果………………………………………………….……..….20
一、 增幅條帶核酸引子…………………..……………………20
二、 ISSR所得條帶統計分析……………………..…………...20
三、 所得樹狀分枝圖………………………………..…………21
四、 主成份分析…………………………...…………………...21
第四章 討論….………………………………………………………...34
一、 增幅條帶核酸引子………………………………………..34
二、 樹狀分枝圖……………………………………………..…34
三、 主成份分析……………………………………………..…36
第五章 結論……..………………………………………………….….38
第六章 參考文獻………………………………………..…...………...40
徐信次、呂明雄。柑橘品種多樣性。台灣柑橘的研究與發展 1995; 33-41。
張同吳、游添榮、曾富生。台灣落花生品種之遺傳變異。農林學報 1999; 48:41-53。
黃阿賢。檸檬之多胚性及雜交苗之鑑定。中國農業研究 1991; 40(2):225-232。
Andersen WR and Fairbanks DJ. Molecular markers: important tools for plant genetic resource characterization. Diversity 1990; 6: 51-53.
Barton NH and Keightley PD. Understanding quantitative genetic variation. Nat. Rev. Genet. 2002; 3: 11–21.
Blair MW, Panaud O and McCouch SR. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerorinting in rice. Theor. Appl. Genet. 1999; 98: 780-792.
Brown PTH. DNA fingerprinting in plant breeding. Agro-Food-industry Hi-Tech November/December 1992.
Charterers YM, Robertson A, Wilkinson MJ and Ramsay G. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5’-anchored simple sequence repeat (SSR) primers. Theor. Appl. Genet. 1996; 92: 442-447.
Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL and Hsieh YS. Mulberry anthocyanins, cyanidin 3-rutinoside and cyaniding 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Letters 2005: 1-12.

Condit R and Hubbell SP. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 1991; 34: 66-71.
Delanny X, Rodgers DM and Palmer RG. Relative genetic contributions among ancestral lines to north American soybean cultivars. Crop Sci. 1983; 23: 944-949.
Deng ZN, Gentile A, Nicolosi E, Vardi A and Tribulato E. Identification of in vivo and in vitro lemon mutants by RAPD markers. J Hort Sci. 1995; 70: 117-125.
Ellsworth DL, Rittenhouse KD and Honeycutt RL. Artificial variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 1993; 14: 214-216.
Fay JC, McCullough HL, Sniegowski PD and Eisen MB. Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biology 2004; 5: 26.
Flint J and Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev. Genet. 2001; 2: 437–445.
Goodwin ID, Aitken EAB and Smith LW. Application of inter simple sequence repeat(ISSR) markers to plant genetics. Electrophoresis. 1997; 18: 1524-1528.
Graner A, Ludwig WF and Melchinger AE. Relationships among European barley germplasm. Comparison of RFLP and pedigree data. Crop Sci. 1994; 34: 1199-1205.
Gupta M, Chyi TS, Severson JR and Owen JL. Amplication of DNA markers from evolutionarity diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 1994; 89: 998-1006.
Halward T, Stalker HT and Kochert. Development of an RFLP linkage map in diploid peanut species. Theor. Appl. Genet. 1993; 87: 379-384.
Hearn CJ. Development of scion cultivars of citrus in Florida. Fla.State Hort.Soc. 1973; 86: 84-88.
Herrero R, Asins MJ, Carbonell EA and Navarro L. Genetic diversity in the orange subfamily Aurantioideae.I. Intraspecies and intragenus genetic variability. Theor Appl Genet. 1996; 92: 599-609.
Hou DX, Yanagita T, Uto T, Masuzaki S and Fujii M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure–activity relationship and molecular mechanisms involved. Biochemical Pharmacology 2005: 1-9.
Huang JC and Sun M. Genetic diversity and relationships of sweet popatoes and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor. Appl. Genet. 2000; 100: 1050-1060.
Hwang SY, Tseng YT and Lo HF. Application of simple sequence repeats in determining the genetic relationships of cultivars used in sweetpotato polycross breeding in Taiwan. Scientia Horticultureae 2002; 93: 215-224.
Jaccard P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 1908; 44: 223-270.
Kim HS and Ward RW. Genetic diversity in Eastern US soft winter wheat based on RFLPs and coefficients of parentage. Theor. Appl. Genet. 1997; 94: 472-479.
Kobayashi S, Ikeda I and Nakatani M. Studies on nucellar embryogenesis in citrus. J.Japan soc.Hort.sci. 1979; 48: 179-185.
Kojima T, Nagaoka T, Noda K and Ogihara Y. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor. Appl. Genet. 1998; 96: 37-45.
Ladizinsky G and Hymowitz T. Seed protein electrophoresis in taxonomic and evolutionary studies. Theor. Appl. Genet. 1979; 54: 145-151.


Lai JA, Yang WC and Hsiao JY. An assessment of genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers assays. Forensic Science International 2001; 42: 93-100.
Li SJ. Self-incompatibility in Matou Wentan. HortScience 1980; 15(3): 298-300.
Lomboy WF and Alpha CG. Usingsimple sequence repeat (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. J. Amer. Soc. Hort. Sci. 1998; 123(2): 182-188.
Monckton DG and Jeffreys AJ. DNA profiling. Curr. Opin. Biotechnol 1993; 4: 660-664.
Monselise SP. Citrus. CRC Handbook of Fruit Set and Development 1986; 87-108.
Nagaoka T and Ogihara Y. Applicability if inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 1997; 84: 597-602.
Reuther W, Webber HJ and Batchelor LD. THE CITRUS INDUSTRY. Division of Agricultural Sciences 1967; 1: 442-489.
Rohli FJ. NTSYSpc. Applied Biostatistics 1997.
Rongwen J, Akkaya MS and Bhagwat AA. The use of microsatellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 1995; 90: 43-48.
Roose ML. Isozymes and DNA restriction fragment length polymorphisms in citrus breeding and systematics. Goren R, Mendel K (eds) Proc 6th Int Citrus Congr. 1988; 1: 155-165.
Rubeena RF and Taylor PWJ. Contrutction of an intraspecific linkage map of lentil. Theor. Appl. Genet. 2003; 107: 910-916.
Salunkhe DK and Desai BB. Citrus. Postharvest Biotechnology of Fruits 1986; 5976.
Sapuntzakis MS and Bowen PE. Role of lycopene and tomato products in prostate health. Biochimica et Biophysica Acta 2005; 1740: 202– 205.
Shih PH, Yeh CT and Yen GC. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food and Chemical Toxicology 2005: 1-10.
Smith JSC and Smith OS. Fingerprinting crop varieties. Adv. In Agron. 1992; 47: 85-140.
Soost RK and Cameron JC. Citrus. Moore Advances in Fruit Breeding 1975; 507-540.
Stalker HT, Phillips JP, Murphy JP and Jones TM. Variation of isozyme patterns among Arachis species. Theor. Appl. Genet. 1994; 87: 746-755.
Stepansky A, Kovalski I and Treves RP. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 1999; 217: 313-332.
Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH and Davis RW. Dissecting the architecture of a quantitative trait locus in yeast. Nature 2002; 416: 326–330.
Sugawara K and Oowada A. IdentiÞcation of Citrus chimeras by RAPD analysis. HortSci. 1995; 30: 1276-1278.
Sun G, Gefu WP, Mayich M and Jong H. RAPD and pedigree-based genetic diversity estimates in cultivated diploid potato hybrids. Theor. Appl. Genet. 2003; 107: 110-115.
Taramino T and Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 1996; 39: 227-287.
Tautz D and Renz M. Simple sequences are ubiquitous repetitive components of meukaryotic genomes. Nucleic acids Res. 1984; 12: 4127-4138.

Ting SV and Attaway JA. Citrus fruits. The biochemistry of Fruits and Their Products 1971; 1: 107-171.
Tinker NA, Fortin MG and Mather DE. Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor. Appl. Genet. 1993; 85: 976-984.
Toxopeus HJ. Notes on the Genetics of a few leaf characters in the genus citrus. Euphytica. 1962; 11: 19-25.
Vitaglione P, Morisco F, Caporaso N and Fogliano V. Dietary Antioxidant Compounds and Liver Health. Critical Reviews in Food Science and Nutrition 2004; 44: 575–586.
Wang Z, Weber JL, Zhong G and Tanksley SD. Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 1994; 88: 1-6.
Watanabe H, Yamagata H and Syakudo K. Studies on the citrus genetic polyembryony in relation to breeding. Japan J. Breeding. 1970; 20(3): 141-145.
Williams JGK, Kubelik AR, Livak KJ, Rafalski JA and Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic matrkers. Nucl. Acids Res. 1990; 18: 6531-6535.
Wolff K, Zietkiewiez E and Hofstra H. Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns. Theor. Appl. Genet. 1995; 91: 439-447.
Wu KS and Tanksley SD. Abundance,polymorphism and genetic mapping of microsatellite in rice. Mol. Gen. Genet. 1993; 241: 225-235.
Zabeau M. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application 1993.
Zietkiewicz E, Rafalski A and Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-archored polymerase chain reaction amplification. Genomics 1994; 20: 176-184.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top