跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姜良茂
研究生(外文):Liang-Mao Chiang
論文名稱:含N-苯基-N′-氰基-甲咪配位基與一價銀或二價銅金屬化合物之化學
論文名稱(外文):Chemistry of Ag(I) and Cu(II) Complexes Containing N-phenyl-N′-cyano-formamidine
指導教授:陳志德
指導教授(外文):Jhy-Der Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:91
中文關鍵詞:多芽氮配位基一價銀化合物二價銅化合物氰基
外文關鍵詞:Cu(II) complexesAg(I) complexesformamidine ligandcyano
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討含N-苯基-N′-氰基-甲咪 (N-Phenyl-N′-cyano-formamidine) 為配位基與二價銅和一價銀化合物之化學。
以N-Phenyl-N′-cyano-formamidine(HPhCNF)配位基與Cu(NO3)2 • 3H2O、CuCl2 • 2H2O 以及 AgX (X=NO3-,SO3CF3-,BF4-, ClO4-) 反應,得到 Cu(NO3)2(HPhCNF)2(THF) , 1;Cu4OCl6(HPhCNF)2(H2O)2•4THF , 2; [Ag(HPhCNF)3](NO3),3;{Ag(HPhCNF)(SO3CF3)}∞,4 ; {[Ag(HPhCNF)](X)}∞ (X = BF4-,5; ClO4-,6)以及 {Ag(HPhCNF)(ClO4)}∞,7,以上七種化合物的單晶結構均以單晶X-ray繞射儀鑑定並紀錄之。
化合物1,銅金屬是與兩組HPhCNF的氰基及硝酸根陰離子的單芽氧分別以對位的方式與一個四氫呋喃配位在上,形成五配位的扭曲四角錐,其分子間經由C-H•••O及N-H•••O形式的氫鍵在空間中進行堆疊。化合物2,是以四核銅金屬化合物形成Cu4OCl6的cluster結構;其中有兩個配位基和兩分子的水配位在銅金屬上;其分子間經由C-H•••Cl及N-H•••Cl形式的氫鍵形成一維鋸齒狀的鏈狀構形。化合物3中,中心金屬銀是以三個配位基形成扭曲的平面三角形的結構;再藉由芳香環間π - π作用力形成柱狀的結構。化合物4 ~ 6是利用配位基橋接銀金屬而形成一維鋸齒狀鏈狀的配位高分子化合物。化合物7中,每個中心金屬為近乎四面體的配位模式,其利用配位基上的氮原子和陰離子上的氧原子以及苯環上三個碳原子形成η3的配位模式;藉此形成二維網狀高分子的構形。
This thesis discusses the chemistry of Copper(II) and Silver(I) complexes containing N-Phenyl-N’-cyano-formamidine.
The reactions of unsymmetrical N-Phenyl-N’-cyano-formamidine (HPhCNF) with Cu(NO3)2 • 3H2O, CuCl2 • 2H2O and AgX (X = NO3-, SO3CF3-, BF4- and ClO4-) afforded the complexes Cu(NO3)2(HPhCNF)2•THF, 1, Cu4OCl6(HPhCNF)2(H2O)2•4THF 2, [Ag(HPhCNF)3](NO3), 3, {Ag(HPhCNF)(SO3CF3)}∞, 4, {[Ag(HPhCNF)](X)}∞ (X = BF4, 5; ClO4, 6) and {Ag(HPhCNF)(ClO4)}∞, 7, which were characterized by single-crystal X-ray diffraction method and elemental analyses.
The copper atom in complex 1 is bonded to two trans nitrogen atoms of cyano group of HPhCNF, two trans oxygen atoms of nitrate and one THF group forming the five coordinated distorted square pyramidal. In the crystal structures of 1, C-H•••O and N-H•••O hydrogen bonds are found to link the molecules. The complex 2 has a central Cu4OCl6 cluster encapsulating an oxo anion which are also coordinated by two N-Phenyl-N’-cyano-formamidine ligands and two H2O molecules. The Ag(I) metal centers in complex 3 shows a distorted triangular planer coordination geometry, which are coordinated by three nitrogen atoms of the cyano groups. The metal centers of complexes 4 ~ 6 are coordinated by two different nitrogen atoms of the bridging ligands, forming unique 1-D zig-zag chains. Each silver metal center of complex 7 is approximately tetrahedrally coordinated by two nitrogen atom, one oxygen donor atoms and three carbon atoms of the η3-phenyl group, forming the novel 2-D polymer sheets.
Contents

Chinese abstract................................................I
English abstract................................................II
Acknowledgement.................................................III
Contents........................................................IV
Table contents..................................................V
Figure contents.................................................VII
Appendix Table Contents.........................................X
Introduction....................................................1
Experimental section............................................11
X-ray crystallography...........................................16
Results and discussions.........................................28
Conclusions.....................................................61
References......................................................62
Appendix........................................................68

Table Contents

Table 1. Properties of strong, moderate and weak hydrogen bonds.............5
Table 2. Crystal data and structure refinement for 1........................18
Table 3. Crystal data and structure refinement for 2........................19
Table 4. Crystal data and structure refinement for 3........................21
Table 5. Crystal data and structure refinement for 4........................22
Table 6. Crystal data and structure refinement for 5........................24
Table 7. Crystal data and structure refinement for 6........................25
Table 8. Crystal data and structure refinement for 7........................27
Table 9. Selected bond distances (Å) and angles (˚) for 1..................29
Table 10. Hydrogen bonding distances (Å) and angles (º) for the complex 1....29
Table 11. Selected bond distances and angles (�a) for 2......................35
Table 12. Hydrogen bonding distances (Å) and angles (º) for the complexes 2..36
Table 13. Comparison of selected structural parameters (Å, ˚) for complex 2; [Cu4OCl6(Mebta)4]; [Cu4OCl6(3-quin)4] and [Cu4OCl6(IMIDH)4].................39
Table 14. Selected bond distances (Å) and angles (˚) for 3..................40
Table 15. Hydrogen bonding distances (Å) and angles (º) for the complex 3....41
Table 16. Selected bond distances (Å) and angles (˚) for 4..................43
Table 17. Selected bond distances (Å) and angles (˚) for 5..................47
Table 18. Hydrogen bonding distances (Å) and angles (º) for the complexes 5..50
Table 19. Selected bond distances (Å) and angles (˚) for 6..................51
Table 20. Hydrogen bonding distances (Å) and angles (º) for the complexes 6..51
Table 21. Selected bond distances (Å) and angles (˚) for 7..................56

Figure Contents

Figure 1. Supramolecular ion-ion interactions exemplified by the interaction of the organic cation [tris(diazabicyclo- octane)]3+ with anion such as Fe(CN)63-...............................................................................1
Figure 2. The ion-dipole interactions of the ion Na+ with a polar molecular such as H2O....................................................................2
Figure 3. Two types of dipole-dipole interactions in carbonyls.................2
Figure 4. X-ray crystal structure of a typical van der Waals inclusion complex p-tert-butylcalix[4]arene•xenon...............................................2
Figure 5. Hydrophobic binding of organic guests in aqueous solution............3
Figure 6. Limiting types of π-π stacking.......................................3
Figure 7. Ag+•••π interaction.................................................4
Figure 8. The structures of formamidine ligands: (a)HDpyF, (b)HDpmF, (c)HDMepyF, (d) o-HDMophF........................................................6
Figure 9. A representation of the binding modes of formamidine ligand-to-metal centers.......................................................................7
Figure 10.The structures of unsymmetrical formamidine ligands: (a) HPhPyF, (b) HAniPyF, (c) HTolPyF, (d) HPhFPF, (e) HPhPcF..................................9
Figure 11.Possible conformations of HPhCNF....................................10
Figure 12.View of the structure of complex 1..................................28
Figure 13.(a) Packing diagram of 1 shows the interactions among the molecules viewing down the c axis. (b) Packing diagram of 1 viewing down the b axis.....30
Figure 14.(a) Packing diagram shows the hydrogen bonding among the molecules; (b) Another hydrogen bonds among the molecules................................31
Figure 15.View of the structure of complex 2..................................34
Figure 16.(a) The metal center of Cu1; (b) The metal center of Cu1.
Figure 17.The packing diagram of complex 2 viewing down the a axis............36
Figure 18.The packing diagram shows the THF solvent molecules packing in to the layers of complex 2 down the b axis...........................................37
Figure 19.The structure of [Cu4OCl6(TPPO)4]. The phenyl groups omitted........37
Figure 20.The structure of (a) [Cu4OCl6(IMIDH)4], (b) [Cu4OCl6(3-quin)4] and (c) [Cu4OCl6(Mebta)4].........................................................38
Figure 21.View of the structure of complex 3..................................41
Figure 22.(a) View of the hydrogen bondings between the cations and anions in 3; (b) Packing diagram showing the π – π stacking interactions among the phenyl group of ligand in 3...................................................42
Figure 23.(a) The asymmetric unit of complex 4; (b) ORTEP drawing of complex 4.............................................................................44
Figure 24.The ABAB packing of complex 4.......................................45
Figure 25.The packing diagram showing the 1-D zigzag chain....................46
Figure 26.The weak Ag•••O interactions and X-H•••O (X = N and C) hydrogen bondings among the 1-D chains.................................................46
Figure 27.(a) The asymmetric unit of complex 5; (b) View of the structure showing the local coordination of Ag in complex 5.............................48
Figure 28.(a) The packing diagram of complex 5 showing the zigzag chain; (b) The packing diagram showing the interactions and hydrogen bond among the chains........................................................................49
Figure 29.(a) The asymmetric unit of complex 6; (b) View of the structure showing the local coordination of Ag in complex 6.............................52
Figure 30.(a) The packing diagram showing the 1-D zigzag chain for 6; (b) The packing diagram showing the interactions among the chains forming the 2-D sheets........................................................................53
Figure 31.(a) The asymmetric unit of complex 7. (b) View of the structure of complex 7.....................................................................56
Figure 32.The helical chain of 7 running the b axis. (The η3-phenyl groups and perchlorate anion are omitted.................................................57
Figure 33.(a) Packing diagram of 7 shows 2-D cylindric architecture among the molecules viewing down the b axis. (b) Packing diagram of 7 viewing down the c axis..........................................................................58
Figure 34.Bonding modes for a metal atom with a benzene ring: (a) metal acting as a σ electron acceptor; (b) metal back-donation in a π* orbital of the ring..........................................................................59
Figure 35.The structure of [(PhCH2NMe3)Ag7(C2)(CF3CO2)6]n.....................59
Figure 36.The structure of [Ag{C6H4(CF3)2}Al(pftb)4]..........................60
Figure 37.The structure of [Ag(GaCl4)•{(p-C6H4CH2CH2)2}].....................60

Appendix Table Contents

Table A-1.Atomic coordinates (Å × 104) and equivalent isotropic displacement coefficients (Å2 × 103) for 1................................................69
Table A-2.Bond Distances (Å) for 1...........................................70
Table A-3.Bond Angles (�a) for 1.............................................71
Table A-4.Atomic coordinates (Å × 104) and equivalent isotropic displacement coefficients (Å2 × 103) for 2................................................72
Table A-5.Bond distances (Å) for 2...........................................73
Table A-6.Bond angles (˚) for 2.............................................74
Table A-7.Atomic coordinates (Å × 104) and equivalent isotropic displacement coefficients (Å2 × 103) for 3................................................76
Table A-8.Bond distances (Å) for 3...........................................78
Table A-9.Bond angles (˚) for 3.............................................79
Table A-10.Atomic coordinates (Å × 104) and equivalent isotropic displacement coefficients (Å2 × 103) for 4................................................80
Table A-11.Bond distances (Å) for 4..........................................81
Table A-12.Bond angles (˚) for 4............................................82
Table A-13.Atomic coordinates (Å × 104) and equivalent isotropic displacement coefficients (Å2 × 103) for 5................................................83
Table A-14.Bond distances (Å) for 5..........................................84
Table A-15.Bond angles (˚) for 5............................................85
Table A-16.Atomic coordinates (Å × 104) and equivalent isotropic displacement coefficients (Å2 × 103) for 6................................................86
Table A-17.Bond distances (Å) for 6..........................................87
Table A-18.Bond angles (˚) for 6............................................88
Table A-19.Atomic coordinates (Å × 104) and equivalent isotropic displacement coefficients (Å2 × 103) for 7................................................89
Table A-20.Bond distances (Å) for 7..........................................90
Table A-21.Bond angles (˚) for 7............................................91
References

1. (a) Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311. (b) Desiraju, G. R. Chem. Commun., 1997, 1475. (c) Mitzi, D. B. J. Chem. Soc. Dalton Trans 2001, 1. (d) Mitzi, D. B. Inorg. Chem. 1999, 38, 6246. (e) Beer, P. D.; Gale,P.A. Angew. Chem., Int. Ed. Engl. 2001, 40, 486. (f) Etter, M. C. J. Phys. Chem. 1991, 93, 4601. (g) Pérez-García, L.; Amabilion, D. B. Chem. Soc. Rev. 2002, 31, 342. (h) Ashton, P. R.; Collins, A. N.; Fyfe, M. C. T.; Glink, P. T.; Menzer, S.; Stoddart, J. F.; Willams, D. J. Angew. Chem. Int. Ed. 1997, 36, 59.
2. (a) Lehn, J.-M. Supramolecular Chemistry Concepts and Perspectives, New York, 1995. (b) Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, New York, 1995. (c) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. Commun. 2001, 509. (d) Holliday, B. J.; Mirkin, C. A. Angew. Chem. 1nt. Ed. 2001, 40, 2022. (e) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (f) Kumar, R. S.; Balasubramanian, S.; Goldberg, I. Inorg. Chem. 1998, 37, 541. (g) Kim, K. Chem. Soc. Rev. 2002, 31, 96.
3. (a) Cotton, F. A.; Lin,-C.; Murillo, C. A. Acc. Chem. Res., 2001, 34, 759. (b) Archer, R. D. Inorganic and Organometallic Polymers, New York, 2001. (c) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (d) Chen, C.-T.; Suslick, K. S. Coord. Chem. Rev. 1993, 128. 293. (e) O’Keeffe, M.; Eddaoudi, M.; Li, H.; Reineke, T.; Yaghi, O. M. J. Solid State Chem. 2000, 152, 3. (f) Lehn, J.-M.; Baxter, P. N. W.; Kneisel, B. O.; Fenske, D. Angew. Chem., Int. Ed. 1997, 36, 1978. (g) serroni, S.; Campagna, S.; Puntoriero, F.; Pietor, C. D.; McClenaghan,
N. D.; Loiseau, F. Chem. Soc. Rev. 2001, 30, 367.
4. G. Wilkinson (Ed.), Comprehensive Coordination Chemistry, 1987, 5,
786.
5. (a) C. A. Hunter, J.K. Sanders, J. Am Chem. Soc, 1990, 112, 5525.
(b) C. A. Hunter, Chem. Soc. Rev. 1994, 101.
6. (a) Kalidas, C.; Hefter, G.; Marcus, Y. Chem. Rev. 2000, 100, 819. (b) Aakeröy, C. B.; Borovik, A. S. Coord. Chem. Rev. 1999, 183, 1. (c) Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.; Withersby, M. A.; Schröder, M. Coord. Chem. Rev. 1999, 183, 117. (d) Fujita, M.
Chem. Coc. Rev. 1998, 27, 417. (e) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem. Int. Ed. 2001, 40, 2382. (f) Grieg, L. M.; Philp, D. Chem. Soc. Rev. 2001, 30, 287.
7. (a) Jeffrey, G. A. An Introduction to Hydrogen Bonding Oxford University Press, New York, 1997. (b) Schowen, R. L. Angew. Chem. Int. Ed. 1997, 36, 1434. (c) Cooke, G.; Rotello, V. M. Chem. Soc. Rev. 2002, 31, 275.
8. (a) Zaworotko, M. J. Chem. Soc. Rev. 1994, 283. (b) Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1461. (c) Janiak, C. J. Chem. Soc. Dalton Trans 2003, 2781. (d) Guillier, F.; Orain, D.; Bradley, M. Chem. Rev. 2000, 100, 2091. (e) Li, H.; laine, A.; O’Keeffe, M.; Yaghi, O. M. Science, 1999, 283, 1145. (f) Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta, J. Angew. Chem., Int. Ed. 1995, 34, 223.
9. (a) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed. 1999, 38, 2638. (b) Munakata, M.; Wu, L. P.; Kuroda-Sowa, T. Adv. Inorg. Chem. 1999, 46, 173. (c) Janiak, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 1431. (d) Noro, S.; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem. Int. Ed. 2002, 39, 2081. (e) Gutschke, S. O. H.; Molinier, M.; Powell, A. K.; Wood, P. T. Angew. Chem. Int. Ed. 1997,
36, 991. (f) Piguet, C.; Bernardinelli, G.; Williams, A. F.; Bocquet, B. Angew. Chem. Int. Ed. 1995, 34, 582. (g) Goodgame, D. M. L.; Menzer, S.; Smith, A. M.; Williams, D. J. Angew. Chem. Int. Ed. 1995, 34, 574.
10. (a) Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc.Chem. Res. 1998, 31, 474. (b) Steiner, Thomas Angew. Chem. Int. Ed. 2002, 41, 48. (c) Mamula, O.; Zelewsky, A. Coord. Chem. Rev. 2003, 242, 87. (d) Vilar, R. Angew, Chem. Int. Ed. 2003, 42, 1460. (e) Peng, S.-M.; Lee, G.-H.; You, X.-Z.; Yong, J.; Cai, C.-X.; Tian, Y.-Q. Angew. Chem. 2002, 114, 1442. (f) Biradha, K.; Seward, C.; Zaworotko, M. J. Angew. Chem. Int. Ed. 1999, 38, 492. (g) Keller, S. W. Angew. Chem. Int. Ed. 1997, 36, 247.
11. (a) Busch, K. W.; Swamidoss, I. M.; Fakayode, S. O.; Busch, M. A. J. Am. Chem. Soc. 2003, 125, 1690. (b) Kim, W.-K.; Hayden, L. M. Macromolecules 2000, 33, 5747. (c) Wei, S.; Zhenyu, Z.; Qiwei, P.; Qingtian, G.; Lina, Y.; Changshui, F.; Dong, X.; Hongzhen, W.; Jinzhong, Y. Macromolecules 2001, 34, 2002. (d) Hughes, E.; Jordan, J.; Gullion, T. J. Phys. Chem. B. 2001, 105, 5887. (e) Teobaldi, G.; Zerbetto, F. J. Am. Chem. Soc. 2003, 125, 7388. (f) Sung, J.-H.; Hirano, S.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Chem. Mater. 2002, 14, 385.
12. (a) Welch, P.; Muthukumar, M. Macromolecules 2000, 33, 6159. (b) Zhang, C.; Wang, C.; Dalton, L. R.; Zhang, H.; Steier, W. H. Macromolecules 2001, 34, 253. (c) Shantz, D. F.; Lobo, R. F. J. Phys. Chem. B. 1999, 103, 5920. (d) Wagner, P.; Nakagawa, Y.; Lee, G. S.; Davis, M. E.; Elomari, S.; Medrud, R. C.; Zones, S. I. J. Am. Chem.
Soc. 2000, 122, 263. (e) Viteri, C. R.; Gilliland, J. W.; Yip, W. T. J. Am. Chem. Soc. 2003, 125, 1980. (f) Faull, J. D.; Gupta, V. K. Langmuir 2001, 17, 1470.

13. (a) Shantz, D. F.; Fild, C.; Koller, H.; Lobo, R. F. J. Phys. Chem. B. 1999, 103, 10858. (b) Faull, J. D.; Gupta, V. K. Langmuir 2002, 18, 6584. (c) Kuo, W.-J.; Hsiue, G.-H.; Jeng, R.-J. Macromolecules 2001, 34, 2373. (d) Ribierre, J.-C.; Mager, L.; Fort, A.; Mery, S. Macromolecules 2003, 36, 2516. (e) Sekiya, R.; Nishikiori, S. Chem. Commun. 2001, 2612. (f) Dillinger, S.; Reuter, H.; Müller, A. Angew. Chem. Int. Ed. 1995, 34, 2328.
14. (a) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391. (b) Kondo, M.; Shimamura, M.; Noro, S. I.; Minakoshi, S.; Asami, A.; Seki, K.; Kitagawa, S. Chem. Mater. 2000, 12, 1288. (c) Navarro, J. A. R.; Freisinger, E.; Lippert, B. Inorg. Chem. 2000, 39, 2301. (d) Jones, J. W. L.; Zakharov, N.; Rheingold, A. L.; Gibson, H. W. J. Am. Chem. Soc. 2002, 124, 13378. (f) Ying, S.-M.; Mao, J.-G.; Sun, Y.-Q.; Zeng, H.-Y.; Dong, Z.-C. Polyhedron 2003, 22, 3097.
15. (a) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158. (b) Eddaoudi, H. L.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. (c) Galan-Mascaros, J. R.; Dunbar, K. R. Chem. Commun. 2001, 217. (d) Kepert, C. J.; Rosseinsky, M. J. Chem. Commun. 1998, 31. (e) Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. (f) Yaghi, O. M.; Davis, C. E.; Li, G.; Li, H. J. Am. Chem. Soc. 1997, 119, 2861.
16. (a) Robinson, F.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1995, 2413. (b) Keller, S. W. Angew. Chem., Int. Ed. Engl. 1997, 36, 247. (c) Gable, R. W.; Hoskins, B. F.; Robson, R. J. Chem. Soc., Chem.Commun. 1990, 1677. (d) Billing, D. G.; Dobson, S. M.; Pattrick, G.; Carlton, L. Acta Cryst. 1991, C47, 1964. (e) Wu, H.-P.; Janiak, C.; Uehlin, L.; Klüfers, P.; Mayer, P. Chem. Comm. 1998, 2637.
17. (a) Hagrman, D.; Zubieta, C.; Rose, D. J.; Zubieta, J.; Haushalter, R. C. Angew. Chem., Int. Ed. Engl. 1997, 36, 873. (b) Lu, J.; Crisci, G.; Niu, T.; Jacobson, A. J. Inorg. Chem. 1997, 36, 5140. (c) Yaghi, O. M.; Li, G. Angew. Chem., Int. Ed. Engl. 1995, 34, 207. (d) Yahioglu, G.; Sammes, P. G. Chem. Soc. Rev. 1994, 327. (e) Molinié, P.; Triki, S.; Pala, J. S.; Decoster, M.; Toupet, L. Angew. Chem.. Int. Ed. 1999, 38, 113.
18. (a) Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 1725. (b) Real, J. A.; Andre´s, E.; Munoz, M. C.; Julve, M.;Granier, T.; Bousseksou, A.; Varret, F. Science 1995, 268, 265. (c) Zapf, P. J.; Haushalter, R. C.; Zubieta, J. Chem.Commun. 1997, 321. (d) Kepert, C. J.; Rosseinsky, M.J. Chem. Commun. 1999, 375.
19. (a) Kiang, Y.-H.; Gardner, G. B.; Lee, S.; Xu, Z.; Lobkovsky,E. B. J. Am. Chem. Soc. 1999, 121, 8204. (b) Hirsch,K. A.; Wilson, S. R.; Moore, J. S. Chem. Commun. 1998, 13. (c) Segl’a, P.; Koman, M.; Šima, J.; Jamnický, M.; Glowiak, T. Polyhedron 1998, 17, 4525.
20. (a) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed. 1999, 38, 2639. (b) Tong, M.-L.; Lee, H. K.; Chen, X.-M.; Huang, R.-B.; Mak, T. C. J. Chem. Soc., Dalton Trans. 1999, 3657. (c) Mangia, A.; Nardelli, M.; Pelizzi, C. J. Chem. Soc., Dalton Trans. 1972, 2483. (d) Mikariya, M.; Azuma, H.; Nuukada, R.; Sayama, Y.; Tanaka, K.; Lim, J.-W.; Handa, M. Bull. Chem. Soc. Jpn. 2000, 73, 2493.
21. (a) Archibald, S. J.; Alcock, N. W.; Busch, D. H.; Whitcomb, D. R. Inorg. Chem, 1999, 38, 5571; (b) Ren, T.; Lin, C.; Amalberti, P.; Macikenas, D.; Protasiewicz, J. D.; Baum, J. C.; Gibson, T. L. Inorg. Chem. Commun. 1998, 1, 23.

22. Yeh, C.-W.; Chen, J.-D. Polyhedron, 2005, 24, 539.
23. Cotton, F. A.; Lei, P.; Murillo, C. A.; Wang, L.-S. Inorg. Chim. Acta, 2003, 349, 165.
24. Cotton, F. A.; Lei, P.; Murillo, C. A. Inorg. Chim. Acta. 2003, 349, 173
25. XSCANS, Release 2.21, Siemens Energy and Automation Inc., Madison, Wisconsin, WI, 1995.
26. SHELXTL 5.10, Bruker Analytical X-ray Instruments Inc., Karlsruche, Germany, 1997.
27. Bertrand, J. A.; Kelly, J. A. J. Am. Chem Soc. 1966, 88, 4746.
28. Atria, A. M.; Vega, A.; Contreras, M.; Valenzuela, J.; Spodine, E.; Inorg. Chim. 1999, 38, 5681.
29. Dickinson, R. C.; Helm, F. T.; Baker, A.; Black, T. D. ; Watson, D. H. Inorg. Chem. 1977, 16, 1530.
30. Skorda, K.; Mrozinski, J.; C.P. Raptopoulou c, J.C. Plakatouras, E.G. Bakalbassis, Inorg. Chim. Acta. 2005, 358, 565.
31. Mulliken, R. S. J. Am. Chem. SOC. 1952, 74, 811.
32. Francl, M. M.; Hout, R. F., Jr.; Hehre, W. J. J. Am. Chem. Soc. 1984, 106, 563
33. Wang, Q.-M.; Mak, T. C. W. Chem. Commun. 2002, 2682.
34. Krossing, I. Chem. Eur. J. 2001, 7, 490.
35. Schmidbaur, H.; Bublak, W.; Huber, B.; Reber, G.; Müller, G. 1986, 12, 1089.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top