跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳玉樹
研究生(外文):Yu-Shu Chen
論文名稱:使用一個差動差分電流傳輸器及兩個運算轉導放大器所組成的兩個可調式正交弦波振盪器
論文名稱(外文):Two Tunable Sinusoidal Quadrature Oscillators Employing One DDCC and Two OTAs
指導教授:侯俊禮侯俊禮引用關係
指導教授(外文):Chun-Li Hou
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:53
中文關鍵詞:差動差分電流傳輸器振盪器運算轉導放大器
外文關鍵詞:OscillatorOTADDCC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文提出了兩個使用單一差動差分電流傳輸器 ( Differential Difference Current Conveyor, DDCC ) 以及兩個運算轉導放大器 ( Operational Transconductance Amplifier, OTA ) 所組成的可調式正交弦波振盪器。被提出的電路都是使用一個DDCC、兩個OTA、兩個接地電阻器和兩個接地電容器所組成。電路驗證部分是使用Hspice軟體並套用TSMC 0.35μm CMOS製程所模擬之結果。這些電路的優點如下:(1) 振盪條件與振盪頻率可獨立調整、(2)頻寬範圍大、(3)頻率可調整、(4)被動元件都接地適合積體化、(5)靈敏度皆小於1、(6)完整使用DDCC的接腳、(7)兩個輸出電壓的相位差為90°。所有模擬結果都與理論值相似。其振盪器的輸出頻率模擬值各為3.1MHz與3.4MHz。而本篇論文的目的是在於提供更多的振盪器架構,以便應用到振盪器時有更多的選擇性。
In this paper, two novel tunable sinusoidal quadrature oscillators employing one DDCC and two OTAs are presented. The proposed circuits both use a DDCC (Differential Difference Current Conveyor), two OTAs (Operational Transconductance Amplifiers), two grounded resistors, and two grounded capacitors. The proposed circuits have been simulated by Hspice using TSMC 0.35μm CMOS technology. The main advantages of the circuits are: (1) uncoupled oscillator, (2) wide frequency range, (3) frequency tunability, (4) all grounded passive components ideally for integration, (5) the sensitivities are all less than unity, (6) full use of the capability of the DDCC, and (7) acquirement of two sinusoidal waveforms with about 90° phase difference. The results show that the simulation values appear to be in approximate agreement with the theories presented. The output frequencies of the proposed circuits are 3.1MHz and 3.4MHz, respectively. However, the purpose in this paper is to propose some new oscillator configuration to provide more choice in many applications.
- 目 錄 -

第一章 緒 論----------------------------------------------------------- - 1 -
1 - 1 研究背景及目的---------------------------------------------------- - 1 -
1 - 2 論文編排---------------------------------------------------------- - 3 -
第二章 電流式主動元件之簡介--------------------------------------------- - 4 -
2 - 1 Nullor模型-------------------------------------------------------- - 4 -
2 - 2 Nullor表示法------------------------------------------------------ - 9 -
2 - 3 以Nullor等效網路來思考主動元件網路------------------------------- - 12 -
2 - 4 電流傳輸器(Current Conveyor, CC)--------------------------------- - 14 -
2 - 4 . 1 第一代電流傳輸器--------------------------------------------- - 15 -
2 - 4 . 2 第二代電流傳輸器--------------------------------------------- - 18 -
2 - 4 . 3 差動差分電流傳輸器------------------------------------------- - 23 -
2 - 5 運算轉導放大器--------------------------------------------------- - 26 -
第三章 DDCC及OTAs所組成的正交振盪器------------------------------------- - 30 -
3 - 1 振盪器的基本理論------------------------------------------------- - 30 -
3 - 2 正交振盪器實現方法----------------------------------------------- - 34 -
3 - 3 本文所發表之正交振盪器(組態一)----------------------------------- - 36 -
3 - 4 本文所發表之正交振盪器(組態二)----------------------------------- - 41 -
3 - 5 主動元件的實現--------------------------------------------------- - 46 -
3 - 6 總結------------------------------------------------------------- - 48 -
第四章 結論與未來展望-------------------------------------------------- - 49 -
參考文獻---------------------------------------------------------------- - 50 -

- 圖 目 錄 -

圖 2 - 1 Nullor模型------------------------------------------------------ - 5 -
圖 2 - 2 四種受控電源--------------------------------------------------- - 10 -
圖 2 - 3 正型Nullor的受控電源表示法------------------------------------- - 12 -
圖 2 - 4 FTFN±的符號--------------------------------------------------- - 12 -
圖 2 - 5 BJT與FET的符號------------------------------------------------- - 13 -
圖 2 - 6 BJT與FET的Nullor等效模型--------------------------------------- - 13 -
圖 2 - 7 OPA的符號與Nullor等效模型-------------------------------------- - 14 -
圖 2 - 8 CCI的符號與Nullor等效模型-------------------------------------- - 15 -
圖 2 - 9 CCI的電路圖---------------------------------------------------- - 16 -
圖 2 - 10 AB類CCI的電路圖----------------------------------------------- - 17 -
圖 2 - 11 CCII的符號與Nullor等效模型------------------------------------ - 18 -
圖 2 - 12 Wilson所提出的CCII電路圖-------------------------------------- - 19 -
圖 2 - 13 Gohh所提出的CMOS CCII+電路圖---------------------------------- - 19 -
圖 2 - 14 Gohh所提出的CMOS CCII-電路圖---------------------------------- - 20 -
圖 2 - 15 Liu等人所提出的CMOS CCII+電路圖------------------------------- - 21 -
圖 2 - 16 Liu等人所提出的CMOS CCII-電路圖------------------------------- - 21 -
圖 2 - 17 DDCC的符號---------------------------------------------------- - 23 -
圖 2 - 18 CMOS DDCC+電路圖---------------------------------------------- - 24 -
圖 2 - 19 CMOS DDCC-電路圖---------------------------------------------- - 25 -
圖 2 - 20 OTA的符號與等效模型------------------------------------------- - 26 -
圖 2 - 21 CMOS OTA電路圖------------------------------------------------ - 27 -
圖 3 - 1 振盪器的基本架構----------------------------------------------- - 30 -
圖 3 - 2 三種不同觀點的振盪器架構--------------------------------------- - 31 -
圖 3 - 3 Ahmed等人所發表的正交振盪器實現方法---------------------------- - 34 -
圖 3 - 4 Holzel所發表的正交振盪器實現方法------------------------------- - 35 -
圖 3 - 5 本文所發表之正交振盪器(組態一)--------------------------------- - 36 -
圖 3 - 6 信號流程圖(組態一)--------------------------------------------- - 36 -
圖 3 - 7 正交輸出電壓模擬圖(組態一)------------------------------------- - 37 -
圖 3 - 8 快速傅立葉分析(組態一)----------------------------------------- - 38 -
圖 3 - 9 電容(C = C1 = C2)對輸出頻率的模擬圖(組態一)-------------------- - 38 -
圖 3 - 10 正交輸出的相位量測圖(組態一)---------------------------------- - 39 -
圖 3 - 11 本文所發表之正交振盪器(組態二)-------------------------------- - 41 -
圖 3 - 12 信號流程圖(組態二)-------------------------------------------- - 41 -
圖 3 - 13 正交輸出電壓模擬圖(組態二)------------------------------------ - 42 -
圖 3 - 14 快速傅立葉分析(組態二)---------------------------------------- - 43 -
圖 3 - 15 電容(C = C1 = C2)對輸出頻率的模擬圖(組態二)------------------- - 43 -
圖 3 - 16 正交輸出的相位量測圖(組態二)---------------------------------- - 44 -
圖 3 - 17 Ibrahim等人所發表的CMOS DDCC+電路圖--------------------------- - 46 -
圖 3 - 18 Cascode OTA電路圖--------------------------------------------- - 47 -

- 表 目 錄 -

表 2 - 1 Nullator和Norator的模型及特性---------------------------------- - 6 -
表 2 - 2 CCII的應用電路------------------------------------------------ - 22 -
表 3 - 1 VO1的THD模擬結果(組態一)-------------------------------------- - 40 -
表 3 - 2 VO2的THD模擬結果(組態一)-------------------------------------- - 40 -
表 3 - 3 VO1的THD模擬結果(組態二)-------------------------------------- - 45 -
表 3 - 4 VO2的THD模擬結果(組態二)-------------------------------------- - 45 -
表 3 - 5 DDCC+的電晶體尺寸與內部偏壓值--------------------------------- - 46 -
表 3 - 6 Cascode OTA的電晶體尺寸與內部偏壓值--------------------------- - 47 -
表 3 - 7 兩個正交振盪器的比較------------------------------------------ - 48 -
[1]K. C. Smith and A. S. Sedra, “The current conveyors-a new circuit building block,” IEEE Proc., vol. 56, pp. 1368-1369, 1968.

[2]B. Wilson, “Constant bandwidth voltage amplification using current conveyor,” Int. J. Electron., vol.65, pp.983-988, 1988.

[3]A. S. Sedra and K. C. Smith, “A second-generation current conveyor and its applications,” IEEE Trans., vol. 17, pp.132-134, 1970.

[4]G. W. Roberts and A. S. Sedra, “All current-mode frequency selective circuits,” Electronics Letters, vol. 25, pp. 759-761, 1989.

[5]G. W. Roberts and A. S. Sedra, “A general class of current amplifier-based biquadratic filter circuits,” IEEE Trans., vol. 39, pp.257-263, 1992.

[6]A. S. Sedra and K. C. Smith, Microelectronic circuits, Fifth edition, Oxford University Press. ISBN 0-19-514252-7

[7]I. A. Khan and S. Khwaja, “An integrable gm-C quadrature oscillator,” Int. J. Electron., vol. 87, pp. 1353-1357, 2000.

[8]A. M. Soliman, “Synthesis of grounded capacitor and grounded resistor oscillators,” Journal of the Franklin Institute, vol. 336, pp. 735-746, 1999.

[9]R. Holzel, “A simple wide-band sine wave quadrature oscillator,” IEEE Trans., vol. 42, pp. 758-760, 1993.

[10]M. T. Ahmed, I. A. Khan and N. Minhaj, “On transconductance-C quadrature oscillators,” Int. J. Electron., vol. 83, pp. 201-207, 1997.

[11]J. W. Horng, “Current differencing buffered amplifiers based single resistance controlled quadrature oscillator employing grounded capacitors,” IEICE Trans., vol. E85-A, pp. 1416-1419, 2002.

[12]L. T. Bruton, RC-active circuits: theory and design, Prentice-Hall, Inc., 1980.

[13]W. Surakampontorn and P. Thitimajshima, “Integrable electronically tunable current conveyors,” IEE Proc., vol. 135, pp. 71-77, 1988.

[14]A. Fabre, “Third-generation current conveyor: a new helpful active element,” Electronics Letters, vol. 31, pp. 338-339, 1995.

[15]A. Fabre, O. Saaid, F. Wiest and C. Boucheron, “Current controlled bandpass filter based on translinear conveyors,” Electronics Letters, vol. 31, pp. 1727-1728, 1995.

[16]W. Chiu, S. I. Liu, H. W. Tsao and J. J. Chen, “CMOS differential difference current conveyors and their applications,” IEE Proc., vol. 143, pp. 91-96, 1996.

[17]H. O. Elwan and A. M. Soliman, “Novel CMOS differential voltage current conveyor and its applications,” IEE Proc., vol. 144, pp. 195-200, 1997.

[18]A. A. El-Adawy, A. M. Soliman and H. O. Elwan, “A novel fully differential current conveyor and applications for analog VLSI,” IEEE Trans., vol. 47, pp. 306-313, 2000.

[19]H. F. Hamed, A. El-Gaafary and M. S. A. El-Hakeem, “A new differential current conveyor and its application as a four quadrant multiplier,” IEEE ICECAS, vol. 2, pp. 569-572, 2001.

[20]H. A. Alzaher, H. Elwan and M. Ismail, “A CMOS fully balanced second-generation current conveyor,” IEEE Trans., vol. 50, pp. 278-287, 2003.

[21]E. A. Metwally, I. M. Hafez, H. El-Ghitani and H. F. Ragai, “Novel CMOS voltage-controlled current conveyor,” IEEE ICM, pp. 67-71, 2003.

[22]K. C. Smith and A. S. Sedra, “Simple wideband linear voltage-to-frequency converter,” Electron. Eng., pp. 1-4, 1968.

[23]K. C. Smith and A. S. Sedra, “A new simple wide-band current-measuring device,” IEEE Trans., vol. IM-18, pp. 125-128, 1969.

[24]B. L. Brennan, T. R. Viswanathan and J. V. Hanson, “The CMOS Negative Impedance Converter,” IEEE J., vol. 23, pp. 1273-1275, 1988.

[25]G. C. Temes and W. H. Ki, “Fast CMOS current amplifier and buffer stage,” Electronics Letters, vol. 23, pp. 696-697, 1987.

[26]P. Aronhime, D. Nelson and C. Adams, “Applications of a first-generation current conveyor in current-mode circuits,” Electronics Letters, vol. 26, pp. 1456-1457, 1990.

[27]K.M. Chan, R.A. Duncan and A.S. Sedra, “High-performance current amplifier and current conveyor,” IEEE ISCAS, vol. 3, pp. 1825-1828, 1991.

[28]R.A. Duncan, K.M. Chan and A.S. Sedra, “Designs for a wideband current amplifier and a current conveyor,” IEEE Trans., vol. 41, pp. 272-280, 1994.

[29]E. Bruun, “Class AB CMOS first-generation current conveyor,” Electronics Letters, vol. 31, pp. 422-423, 1995.

[30]C. A. dos Reis Filho and M. dos Santos, “A high-performance CMOS first-generation current conveyor,” IEEE ICDCAS, pp. 62-65, 1995.

[31]A. Fabre, H. Amrani and H. Barthelemy, “A novel class AB first generation current conveyor,” IEEE Trans., vol. 46, pp. 96-98, 1999.

[32]B. Wilson, “High-performance current conveyors implementation,” Electronics Letters, vol.20, pp. 990-991, 1984.

[33]F. Gohh, “CMOS current conveyor,” MASc Thesis, University of Toronto, Canada, 1988.

[34]S. I. Liu, H. W. Tsao, J. Wu, T. C. Yu and T. K Lin, “Design and optimization of MOSFET-capacitor filters using CMOS current conveyors,” IEEE ISCAS, vol. 3, pp. 2283-2286, 1990.

[35]H. O. Elwan and A. M. Soliman, “Low-voltage low-power CMOS current conveyors,” IEEE Trans., vol. 44, pp. 828-835, 1997.

[36]T. Kurashina, S. Ogawa and K. Watanabe, “A high performance class AB current conveyor,” IEEE ICECAS, vol. 3, pp. 143-146, 1998.

[37]A. M. Ismail and A. M. Soliman, “Wideband CMOS current conveyor,” Electronics Letters, vol. 34, pp. 2368-2369, 1998.

[38]I. A. Awad and A. M. Soliman, “New CMOS realization of the CCII-,” IEEE Trans., vol. 46, pp. 460-463, 1999.

[39]A. M. Ismail and A. M. Soliman, “Low-power CMOS current conveyor,” Electronics Letters, vol. 36, pp. 7-8, 2000.

[40]B. Calvo, S. Celma, P. A. Martinez and M. T. Sanz, “An improved CMOS class-AB current conveyor,” IEEE MWSCAS, vol. 1, pp. 309-313, 2001.

[41]R. Mita, G. Palumbo and S. Pennisi, “1.5-V CMOS CCII+ with high current-driving capability,” IEEE Trans., vol. 50, pp. 187-190, 2003.

[42]A. J. Lopez-Martin, J. Ramirez-Angulo and R. G. Carvajal, “Low-voltage low-power wideband CMOS current conveyors based on the flipped voltage follower,” IEEE ISCAS, vol. 1, pp. 801-804, 2003.

[43]E. Sackinger and W. Guggenbuhi, ”A versatile buliding block: the CMOS differential difference amplifier,” IEEE J., vol. 22, No.2, 1987.

[44]M. A. Ibrahim, H. Kuntman and O. Cicekoglu, “A very high-frequency CMOS self-biasing complementary folded cascode differential difference current conveyor with application examples,” IEEE MWSCAS, vol. 1, pp. 279-282, 2002.

[45]M. A. Ibrahim and H. Kuntman “High linearity CMOS differential current conveyor (DDCC),” IEEE ICM, pp. 6-9, 2002.

[46]Jianping Hu, Yinshui Xia, Tiefeng Xu and Huiying Dong, “A new CMOS differential difference current conveyor and its applications,” IEEE ICCCAS, vol. 2, pp. 1156-1160, 2004.

[47]M. A. Ibrahim, H. Kuntman and O. Cicekoglu, “New second-order low-pass, high-pass and band-pass filters employing minimum number of active and passive elements,” IEEE ISSCAS, vol. 2, pp. 557-560, 2003.

[48]V. Temizyurek and I. Myderrizi, “A novel three-input one-output voltage-mode universal filter using differential difference current conveyor (DDCC),” IEEE Proc., vol. 1, pp. 103-106, 2004.

[49]R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE Press. ISBN 0-7803-3416-7

[50]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill. ISBN 0-07-118839-8

[51]T. S. Liao, “The design and applications of oscillators employing the minimum componets,” Dr. thesis, CYCU, Taiwan, 2003.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李宗鴻(2003):臺灣離島島嶼遊客遊憩體驗之研究。旅遊管理研究(3),2期。51-66頁。
2. 張忠峰、劉選吉(2002):大專院校學生初學休閒水肺潛水時應有的認知。大專體育(59)。
3. 張清源(2004):休閒不等於花錢:休閒教育的重要性。運動管理季刊(6),71-77頁。
4. 張廖麗珠(2001):「運動休閒」與「休閒運動」概念岐異詮釋。中華體育季刊,57,28-36頁。
5. 郭政茂(2004):運動行銷之新概念:「體驗行銷」之介紹。大專體育(71),94-99頁。
6. 陳俊民(2002):從休閒與運動的關係談學校體育的發展方向。中華體育16(4)期,118-124頁。
7. 陳穎峰(2004):澎湖縣風浪板運動發展概況1975~2000年。東師體育11期。
8. 黃坤得(2002):休閒運動課程之探討。中華體育季刊,17(1),88-95頁。
9. 黃坤得、許成源(2002):水域休閒運動之發展趨勢。大專體育,62, 174-180頁。
10. 黃坤得、黃瓊慧(2000):水上休閒運動之初探。臺灣體育,109,15-18頁。
11. 楊明恩(1999):我國古代的獨木舟。學校體育(9),第5期,56-59頁。
12. 劉照金(2003):運動觀光之發展現況與未來趨勢。國民體育季刊32(3),60-67頁。
13. 鄭惠英(1985):雅美的大船文化,中央研究院民族學研究所集刊,57,95-141頁。
14. 蘇龍曉(2002):青少年階段休閒運動培養之探討。中華體育(十六),第二期。110-115頁。