|
[1] Y. Miao, J. Chen, K. Fang, “New technology for the detection of pH”, Journal of Biochemical and Biophysical Methods, vol.63, pp.1-9, 2005. [2] R.P. Buck, S. Rondinini, A.K. Covington, F.G.K. Baucke, C.M.A. Brett, M.F. Camoes, M.J.T. Milton, T. Mussini, R. Naumann, K.W. Pratt, P. Spitzer, G.S. Wilson, “Measurement of pH. definition, standards, and procedures”, Pure and Applied Chemistry, vol.74, pp.2169-2200, 2002. [3] M.A. Arnold, M.E. Meyerhoff, “Ion-selective electrodes”, Analytical Chemistry, vol.56, pp.20R-48R, 1984. [4] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Transactions on Bio-medical Engineering, vol.MBE-17, pp.70-71, 1970. [5] A. Fog, R.P. Buck, “Electronic semiconducting oxides as pH sensors”, Sensors and Actuators, vol.5, pp.137-146, 1984. [6] K. Kreider, “Iridium oxide thin-film stability in high temperature corrosive solutions”, Sensors and Actuators B, vol.5, pp.165-169, 1991. [7] P. Shuk, K.V. Ramanujachary, M. Greenblatt, “New metal-oxide- type pH sensors”, Solid State Ionics, vol.86-88, pp.1115-1120, 1996. [8] A. Eftekhari, “pH sensor based on deposited film of lead oxide on aluminum substrate electrode”, Sensors and Actuators B, vol.88, pp.234-238, 2003. [9] M. Arvand, M.F. Mousavi, M.A. Zanjanchi, M. Shamsipur, “Direct determination of triamterene by potentiometry using a coated wire selective electrode”, Journal of Pharmaceutical and Biomedical Analysis, vol.33, pp.975-982, 2003. [10] W. Ehrfeld, “Electrochemistry and microsystems”, Electro- chimica Acta, vol.48, pp.2857-2868, 2003. [11] L. Bousse, D. Hafeman, N. Tran, “Time-dependence of the chemical response of silicon nitride surfaces”, Sensors and Actuators B, vol.1, pp.361-367, 1990. [12] P. Gimmel, K.D. Shierbaum, W. Gopel, H.H. van den Vlekkert, N.F. de Rooij, “Microstructural solid-state ion-sensitive mem- branes by thermal oxidation of Ta”, Sensors and Actuators B, vol.1, pp.345-349, 1990. [13] J.C. Chou, C.N. Hsiao, “The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET”, Sensors and Actuators B, vol.66, pp.181-183, 2000. [14] G. Steinhoff, M. Hermann, W.J. Schaff, L.F. Eastman, M. Stutzmann, M. Eickhoff, “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors”, Applied Physics Letters, vol.83, pp.177-179, 2003. [15] K.G. Kreider, M.J. Tarlov, J.P. Cline, “Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides”, Sensors and Actuators B, vol.28, pp.167-172, 1995. [16] H.K. Liao, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study of amorphous tin oxide thin films for ISFET applications”, Sensors and Actuators B, vol.50, pp.104-109, 1998. [17] L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study on extended gate field effect transistors with tin oxide sensing membrane”, Materials Chemistry and Physics, vol.63, pp.19-23, 2000. [18] Y.L. Chin, J.C. Chou, T.P. Sun, H.K. Liao, W.Y. Chung, S.K. Hsiung, “A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process”, Sensors and Actuators B, vol.75, pp.36-42, 2001. [19] C.L. Wu, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study on SnO2/Al/SiO2/Si ISFET with a metal light shield”, Materials Chemistry and Physics, vol.63, pp.153-156, 2000. [20] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate”, Sensors and Actuators B, vol.71, pp.106-111, 2000. [21] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET”, Materials Chemistry and Physics, vol.70, pp.12-16, 2001. [22] C.W. Pan, J.C. Chou, T.P. Sun, S.K. Hsiung, “Development of the tin oxide pH electrode by the sputtering method”, Sensors and Actuators B, vol.108, pp.863-869, 2005. [23] D. Yu, Y.D. Wei, G.H. Wang, “Time-dependent response characteristics of pH-sensitive”, Sensors and Actuators B, vol.3, pp.279-285, 1991. [24] P. Hein, P. Egger, “Drift behavior of ISFETs with Si3N4-SiO2 gate insulator”, Sensors and Actuators B, vol.13-14, pp.655-656, 1993. [25] L. Bousse, S. Mostarshed, B. van der Schoot, N.F. de Rooij, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sensors and Actuators B, vol.17, pp.157-164, 1994. [26] T. Matsuo, M. Esashi, “Methods of ISFET fabrication”, Sensors and Actuators, vol.1, pp.77-96, 1981. [27] D.H. Kwon, B.W. Cho, C.S. Kim, B.K. Sohn, “Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET”, Sensors and Actuators B, vol.34, pp.441-445, 1996. [28] A. Garde, J. Alderman, W. Lane, “Improving the drift and hysteresis of the Si3N4 pH response using RTP techniques”, Sensors and Materials, vol.9, pp.15-23, 1997. [29] H. Tamura, K. Mita, A.Tanaka, M. Ito, “Mechanism of hydroxylation of metal oxide surfaces”, Journal of Colloid and Interface Science, vol.243, pp.202-207, 2001. [30] C.C. Liu, B.C. Bocchiccio, P.A. Overmyer, M.R. Neuman, “A palladium-palladium oxide miniature pH electrode”, Science, vol.207, pp.188-189, 1980. [31] H.N. McMurray, P. Douglas, D. Abbot, “Novel thick-film pH sensors based on ruthenium dioxide-glass composites”, Sensors and Actuators B, vol.28, pp.9-15, 1995. [32] J.A. Mihell, J.K. Atkinson, “Planar thick-film pH electrodes based on ruthenium dioxide hydrate”, Sensors and Actuators B, vol.48, pp.505-511, 1998. [33] M. Esashi, T. Matsuo, “Integrated micro muti ion sensor using field effect of semiconductor”, IEEE Transactions on Bio- Medical Engineering, vol.BME-25, pp.184-192, 1978. [34] S. Jamasb, S. Collins, R.L. Smith, “A physical model for drift in pH ISFETs”, Sensors and Actuators B, vol.49, pp.146-155, 1998. [35] S. Jamasb, S.D. Collins, R.L. Smith, “A physical model for threshold voltage instability in Si3N4-gate H+-sensitive FET’s (pH ISFET’s)”, IEEE Transactions on Electron Devices, vol.45, pp.1239-1245, 1998. [36] H. Scher, E.W. Montroll, “Anomalous transit-time dispersion in amorphous soilds”, Physical Review B, vol.12, pp.2455-2477, 1975. [37] G. Pfister, H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3”, Physical Review B, vol.15, pp.2062- 2083, 1977. [38] J. Kakalios, R.A. Street, W.B. Jackson, “Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon”, Physical Review Letters, vol.59, pp.1037- 1040, 1987. [39] D.T. Krick, P.M. Lenahan, J. Kanicki, “Electrically active point defects in amorphous silicon nitride: An illumination and charge injection study”, Journal of Applied Physics, vol.64, pp.3558- 3563, 1988. [40] L. Bousse, P. Bergveld, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sensors and Actuators, vol.6, pp.65-78, 1984. [41] P.A. Hammond, D.R.S. Cumming, “Performance and system-on- chip integration of an unmodified CMOS ISFET”, Sensors and Actuators B, In press, 2005. [42] J. Hendrikse, W. Olthuis, P. Bergveld, “A method of reducing oxygen induced drift in iridium oxide pH sensors”, Sensors and Actuators B, vol.53, pp.97-103, 1998. [43] R. Kuhnhold, H. Ryssel, “Modeling the pH response of silicon nitride ISFET devices”, Sensors and Actuators B, vol.68, pp.307-312, 2000. [44] P. Woias, L. Meixner, P. Frostl, “Slow pH response effects of silicon nitride ISFET sensors”, Sensors and Actuators B, vol.48, pp.501-504, 1998. [45] J.C. Chou, H.M. Tsai, C.N. Shiao, J.-S. Lin, “Study and simulation of the drift behavior of hydrogenated amorphous silicon gate pH-ISFET”, Sensors and Actuators B, vol.62, pp.97-101, 2000. [46] J.L. Chiang, J.C. Chou, Y.C. Chen, G.S. Liau, C.C. Cheng, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor”, Japanese Journal of Applied Physics, vol.42, pp.4973-4977, 2003. [47] J.C. Chou, K.Y. Huang, J.S. Lin, “Simulation of time-dependent effects of pH-ISFETs”, Sensors and Actuators B, vol.62, pp.88-91, 2000. [48] A. Simonis, C. Ruge, M. Muller-Veggian, H. Luth, M.J. Schoning, “A long-term stable macroporous-type EIS structure for electrochemical sensor applications”, Sensors and Actuators B, vol.91, pp.21-25, 2003. [49] L. Bousse, H.H. van den Vlekkert, N.F. de Roij, “Hysteresis in Al2O3-gate ISFETs”, Sensors and Actuators B, vol.2, pp.103-110, 1990. [50] H.K. Liao, L.L. Chi, J.C. Chou, WY. Chung, T.-P. Sun, S.-K. Hsiung, “Study on pHpzc and surface potential of tin oxide gate ISFET”, Materials Chemistry and Physics, vol.59, pp.6-11, 1999. [51] D.E. Yates, S. Levine, T.W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, Journal of the Chemical Society, Faraday Transactions I, vol.70, pp.1807- 1818, 1974. [52] J.P. Xu, P.T. Lai, B. Han, W.M. Tang, “Determination of optimal insulator thickness for MISiC hydrogen sensors”, Solid-State Elec-tronics, vol.48, pp.1673-1677, 2004. [53] J.C. Chou, C.Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET”, Materials Chemistry and Physics, Vol. 71, pp. 120-124, 2001. [54] J.L. Brousseau, H. Bourque, A. Tessier, R.M. Leblance, “Electrical properties and topography of SnO2 thin films prepared by reactive sputtering”, Applied Surface Science, vol.108, pp.351-358, 1997. [55] J.C. Chou, Y.F. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by sol-gel method”, Sensors and Actuators B, vol.86, pp.58-62, 2002. [56] B. Palan, F.V. Santos, J.M. Karam, B. Courtois, M. Husak, “New ISFET sensor interface circuit for biomedical applications”, Sensors and Actuators B, vol.57, pp.63-68, 1999. [57] A. Morgenshtin, L. Sdakov-Boreysha, U. Dinnar, “Wheatstone- Bridge readout interface for ISFET/REFET applications”, Sensors and Actuators B, vol.98, pp.18-27, 2004. [58] S.S. Jan, Y.C. Chen, J.C. Chou, “Effect of Mg2+-dopant on the characteristics of lead titanate sensing membrane for ion- sensitive filed-effect transistors”, Sensors and Actuators B, vol.108, pp.883-887, 2005. [59] C.N. Tsai, J.C. Chou, T.P. Sun, S.K. Hsiung, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode”, Sensors and Actuators B, vol.108, pp.877-882, 2005. [60] H.C. Liao, “Novel calibration and compensation technique of circuit design for biosensor”, Master Thesis, Institute of Electronic Engineering, Chung Yuan Christian University, June, 2004. [61] H.C.G. Ligtenberg, J.G.M. Leuveld, “ISFET-based measuring device and method for correcting drift”, United States Patent, Patent Number: 4,701,253, Date of Patent: October 20, 1987. [62] S. Casans, A.E. Navarro, D. Munoz, E. Castro, A. Baldi, N. Abramova, “Novel voltage-controlled conditioning circuit applied to the ISFETs temporary drift and thermal dependency”, Sensors and Actuators B, vol.91, pp.11-16, 2003. [63] S. Casans, D.R. Munoz, A.E. Navarro, A. Salazar, “ISFET drawbacks minimization using a novel electronic compensation”, Sensors and Actuators B, vol.99, pp.42-49, 2004. [64] S. Jamasb, “An analytical technique for counteracting drift in ion-selective field effect transistors (ISFETs)”, IEEE Sensors Journal, vol.4, pp.795-801, 2004. [65] J.L. Chiang, S.S. Jan, J.C. Chou, Y.C. Chen, “Study on temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide”, Sensors and Actuators B, vol.76, pp.624-628, 2001. [66] S.S. Jan, Y.C. Chen, J.C. Chou, C.C. Cheng, C.T. Lu, “Nonideal factors of ion-sensitive field-effect transistor with lead titanate gate”, Japanese Journal of Applied Physics, vol.41, pp.6297- 6301, 2002. [67] L.T. Yin, “Study of biosensors based on an ion sensitive field effect transistor”, Ph. D. Thesis, Institute of Electronic Engineering, Chung Yuan Christian University, June, 2001.
|