跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡居能
研究生(外文):Chu-Neng Tsai
論文名稱:研究二氧化錫酸鹼感測器之非理想效應及校正方法
論文名稱(外文):Study on the Non-ideal Effect of the Tin Oxide pH Sensor and the Calibration Method
指導教授:熊慎幹
指導教授(外文):Shen-Kan Hsiung
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:166
中文關鍵詞:時間常數模型時漂校正方法遲滯時漂電壓式固態二氧化錫酸鹼感測器
外文關鍵詞:potentiometric solid-state SnO2 pH sensorhysteresisdrift calibration methoddrifttime-constant model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
pH值係最常見之量測,許多化學或生化反應皆仰賴pH值,且最佳之反應係受溶液的pH值所控制,故感測特性如靈敏度、時漂與遲滯係酸鹼感測器之決定因子,時漂與遲滯之現象係由慢響應所引起,於量測上造成誤差,故需瞭解非理想之效應及找尋適當的校正方法,改善非理想之現象。
本論文係以濺鍍法製作電壓式固態二氧化錫酸鹼感測器。研究元件之感測面積與感測膜膜厚對感測特性之影響,而二氧化錫酸鹼感測器合適之感測面積介於2 * 2 mm2與3 * 3 mm2之間,合適之感測膜膜厚介於230 nm與260 nm之間。
藉由時間常數模型研究二氧化錫酸鹼感測器之時漂與遲滯,且以時間常數模型模擬時漂之行為,於本論文中提出時漂校正之方法,此方法係實現於電路上,依研究結果,此時漂校正電路可校正二氧化錫酸鹼感測器之時漂,此外,結合時間常數模型及網路分析之觀念,連繫時漂與遲滯之關係後,可由時漂之時間常數模型預測遲滯之寬度。
pH is one of the most common measurements because many chemical and biological processes are dependent on the pH. It is so important that the optimal reaction is controlled by the pH of the solution. Thus, the sensing properties such as sensitivity, drift and hysteresis are the decisive factors of pH sensors. The phenomena of the drift and the hysteresis result from the slow response and cause an error on the measurement. It is necessary to understand the non-ideal effect and find out the calibration method to improve the non-ideal phenomena.
A potentiometric solid-state SnO2 pH sensor prepared by sputtering method is studied in this study. The sensing area and sensing thickness are studied on the sensing properties. The suitable sensing area of the SnO2 pH electrode is between 2 * 2 mm2 and 3 * 3 mm2 and the suitable sensing thickness of the SnO2 pH sensor is between 230 nm and 260 nm.
The phenomena of the drift and the hysteresis of the SnO2 pH sensors are investigated by the time-constant model. The time-constant model is utilized to simulate the behavior of the drift. Furthermore, a method of the drift calibration is presented and the method is performed on the circuit. The experimental results indicate that the circuit of the drift calibration is efficient to calibrate the drift of the SnO2 pH sensor. Besides, the relationship between the drift and the hysteresis is linked by the time-constant model and the concept of the network analysis. In this way, the hysteresis width is predicted by the time-constant model of the drift.
CONTENTS

Abstract I
List of symbols VII
Figure captions IX
Table captions XV

Chapter 1 Introduction 1
1.1 Introduction of pH sensor 1
1.2 Research objective 4
1.3 Thesis outline 6

Chapter 2 Theory Description 7
2.1 Introduction 7
2.2 Potential pH response of the metal oxide pH electrode 11
2.3 Mechanism of the non-ideal effects of pH sensors 14
2.3.1 Time-dependent model of the drift 20
2.3.2 Hysteresis effect of pH sensors 23
2.3.2.1 Phenomenon and mechanism of the hysteresis effect 23
2.3.2.2 Hysteresis model of pH sensors 24


Chapter 3 Non-ideal effect of the SnO2 pH sensor 29
3.1 Introduction 29
3.2 Experimental 30
3.2.1 Materials 30
3.2.2 Preparation of the solid-state SnO2 pH electrode 30
3.2.3 Measurement setup 31
3.3 Suitable area and thickness of the SnO2 sensing layer 32
3.3.1 The effect of the sensing area for the SnO2 pH electrodes 32
3.3.1.1 Sensitivity of the SnO2 pH electrode with different sensing areas 32
3.3.1.2 Hysteresis effect of the SnO2 pH electrode with different sensing areas 36
3.3.2 The effect of the sensing thickness for the SnO2 pH electrodes 40
3.3.2.1 Response time of the SnO2 pH electrode with different sensing thicknesses 40
3.3.2.2 Hysteresis effect of the SnO2 pH electrode with different sensing thicknesses 42
3.3.2.3 Drift of the SnO2 pH electrode with different sensing thicknesses 45
3.4 Drift phenomenon of the SnO2 pH electrode 49
3.4.1 Drift behavior of the SnO2 pH electrode 49
3.4.2 Main source of the drift of the measurement system 52
3.4.3 Method of the drift calibration for potentiometric sensors 55
3.5 Hysteresis effect of the SnO2 pH electrode 71
3.5.1 Main source of the hysteresis of the measurement system 71
3.5.2 Ground of the hysteresis effect of the pH sensors 75
3.5.3 Hysteresis width of the SnO2 pH electrode 76
3.5.4 Hysteresis calibration and the link between the drift and the hysteresis width of the SnO2 pH electrode 79

Chapter 4 Discussions 87
4.1 Comparison and analysis of the methods of the drift calibration 87
4.1.1 Comparison of the drift calibration methods in novelty, inventive step and industrial application 87
4.1.2 Analysis of the drift calibration in system, method and practicability 91
4.2 Normalization and comparison of the hysteresis width with various materials 98
4.3 Sensing properties of the SnO2 pH electrode 102

Chapter 5 Conclusions and suggestions for further work 103
5.1 Conclusions 103
5.2 Suggestions for further work 105

References 106
口試委員之問題及答辯 112
Appendix 122
Biography and list of publications 138

Figure Captions

Fig. 2.1 Schematic of the ISE combined with the reference electrode system to measure ionic species in an aqueous sample: (a) electrode body; (b) internal filling solution; (c) reference electrolyte (3 M KCl); (d) Ag/AgCl internal reference electrode; (e) liquid junction/porous frit and (f) ion-selective membrane. 8
Fig. 2.2 Schematic of an ISFET in use: (a) reference electrode; (b) ISFET device. 10
Fig. 2.3 Solid-state ISE with electronic buffering: (a) reference electrode; (b) ISE; (c) voltage amplifier to reduce source impedance. 10
Fig. 2.4 Hydration and hydroxylation of metal oxide surfaces with the formation of (a) acid hydroxyl groups and (b) base hydroxyl groups. Lattice oxide ion (�R); lattice metal ion (��). 12
Fig. 2.5 Dispersive transport at the electrolyte-insulator interface. 16
Fig. 2.6 Dynamic process of the hysteresis. 20
Fig. 2.7 Relationship of the multiple time-constants models. 22
Fig. 3.1 Preparation of the SnO2 pH electrode. 31
Fig. 3.2 Measurement system of the SnO2 pH electrode. 32
Fig. 3.3 Sensitivity of the SnO2 pH electrode with the sensing area of 3 * 3 mm2 between pH2 and pH12. 34
Fig. 3.4 Output voltage of the SnO2 pH electrode with the sensing area of 3 3 mm2 between pH2 and pH12. 34
Fig. 3.5 Sensitivity versus different sensing areas. The sensing areas are 0.5 0.5 mm2, 1 1 mm2, 2 2 mm2, 3 3 mm2, 5 5 mm2 and 10 10 mm2, respectively. 35
Fig. 3.6 Output voltage of the SnO2 pH electrode with the sensing area of 3 3 mm2 under the loop circle of pH7-4-7-10-7. 37
Fig. 3.7 Output voltage of the SnO2 pH electrode with the sensing area of 3 3 mm2 under the loop circle of pH7-10-7-4-7. 38
Fig. 3.8 Hysteresis width vs. different sensing areas between pH4 and pH10. The sensing areas are 0.5 0.5 mm2, 1 1 mm2, 2 2 mm2, 3 3 mm2, 5 5 mm2 and 10 10 mm2, respectively. 39
Fig. 3.9 Response time width vs. different sensing thicknesses at pH12 buffer solution. The sensing thicknesses are 60 nm, 130 nm, 160 nm, 230 nm, 260 nm and 320 nm, respectively. 41
Fig. 3.10 Hysteresis width versus different sensing thicknesses between pH4 and pH10. 43
Fig. 3.11 Several kinds of charges locate in the SnO2 layer. 45
Fig. 3.12 Drift behavior of the SnO2 pH electrode with the thickness of 260 nm. 46
Fig. 3.13 Drift versus different sensing thicknesses at pH7. 47
Fig. 3.14 Comparison of the response time, hysteresis width and the thickness. 48
Fig. 3.15 Comparison of the response time, drift and the thickness. 48
Fig. 3.16 Measurement and simulation of the drift behavior of the SnO2 pH electrode at pH7 with a pH step from pH2 to pH7 at 25℃. 50
Fig. 3.17 Drift of the SnO2 pH electrode at different pH solutions. 51
Fig. 3.18 Test circuit for measuring the drift of the readout circuit. 53
Fig. 3.19 Drift of the readout circuit during 12 hours, whose input was a constant voltage with 90.25 mV. 53
Fig. 3.20 Drift of the readout circuit during 12 hours, whose input was zero bias. 54
Fig. 3.21 Drift of the reference electrode during 12 hours at pH7. 54
Fig. 3.22 Concept of the drift calibration for potentiometric sensors. 55
Fig. 3.23 Principle of the drift calibration for potentiometric sensors. 57
Fig. 3.24 Circuits of the drift calibration for potentiometric sensors. 58
Fig. 3.25 Circuit with the function of the voltage shifting. 59
Fig. 3.26 Original drift of the Sample 1, whose pH change is from pH2 to pH7. 60
Fig. 3.27 Original drift of the Sample 2, whose pH change is from pH2 to pH7. 60
Fig. 3.28 Original drift of the Sample 3, whose pH change is from pH2 to pH7. 61
Fig. 3.29 Drift of the Sample 1 after calibration, whose pH change is from pH2 to pH7. 62
Fig. 3.30 Drift of the Sample 2 after calibration, whose pH change is from pH2 to pH7. 62
Fig. 3.31 Drift of the Sample 3 after calibration, whose pH change is from pH2 to pH7. 63
Fig. 3.32 Comparison of the original drift and the drift after calibration of the Sample 1. 64
Fig. 3.33 Comparison of the original drift and the drift after calibration of the Sample 2. 64
Fig. 3.34 Comparison of the original drift and the drift after calibration of the Sample 3. 65
Fig. 3.35 Sensitivity after calibration of the Sample 1. 66
Fig. 3.36 Sensitivity after calibration of the Sample 2. 66
Fig. 3.37 Sensitivity after calibration of the Sample 3. 67
Fig. 3.38 Wheatstone-Bridge structure employed on the SnO2 pH electrode.68
Fig. 3.39 Comparison of the original drift of the SnO2 pH electrode and drifts of the SnO2 pH electrode based on the Wheatstone-Bridge structure and the drift calibration circuit. 69
Fig. 3.40 Original drift of the NH4+ ISE measured in the Tris-HCl buffer of the ammonium concentration of 10-3M. 70
Fig. 3.41 Drift of the NH4+ ISE after calibration measured in the Tris-HCl buffer of the ammonium concentration of 10-3M. 70
Fig. 3.42 Comparison of the original drift and the drift after calibration of the NH4+ ISE. 71
Fig. 3.43 Measurement structure of the instrumentation amplifier for the test of the hysteresis. 72
Fig. 3.44 Output signal of the circuit with the loop circle 0-300 mV-0-(-300 mV)-0. 73
Fig. 3.45 Hysteresis residual of the regression with the loop circle 0-300 mV-0-(-300 mV)-0. 73
Fig. 3.46 Hysteresis residual of the regression with the loop circle 300 mV-(-300 mV)-300 mV. 74
Fig. 3.47 Hysteresis residual of the regression with the loop circle (-300 mV)-300 mV-(-300 mV). 75
Fig. 3.48 Output voltage of the SnO2 pH electrode with the loop circle of pH7-2-7-12-7. 77
Fig. 3.49 Sensitivity of the SnO2 pH electrode with the loop circle of pH7-2-7-12-7. 77
Fig. 3.50 Hysteresis curve of the SnO2 pH electrode with the loop circle of pH7-2-7-12-7. 78
Fig. 3.51 Drift of the SnO2 pH electrode as a function of time after a pH step from pH2 to pH12. 80
Fig. 3.52 Hysteresis curve of the SnO2 pH electrode with the loop time of 1260 s. 81
Fig. 3.53 Hysteresis curve of the SnO2 pH electrode with the loop time of 2520 s. 81
Fig. 3.54 Hysteresis curve of the SnO2 pH electrode with the loop time of 5040 s. 82
Fig. 3.55 Comparison of the hysteresis curves of the SnO2 pH electrode with different loop time. 82
Fig. 3.56 Relationship between the normalized hysteresis width and the time needed for a sweep from one pH extreme to another (ts) of the SnO2 pH electrode. 85
Fig. 3.57 Relationship between the normalized hysteresis width and the time needed for a sweep from one pH extreme to another (ts) of the SnO2 pH electrode. 86


Table Captions
Table 3.1 Sensitive results of the SnO2 pH electrodes with different sensing areas. 35
Table 3.2 Hysteresis results of SnO2 pH electrodes with different sensing areas between pH4 and pH10. 38
Table 3.3 Results of the response time with different sensing thicknesses. 41
Table 3.4 Results of the hysteresis (mV) of different sensing thicknesses under the loop circle pH7-4-7-10-7. 43
Table 3.5 Hysteresis properties of the SnO2 pH electrodes. 78
Table 3.6 Calculation of normalized hysteresis width based on the 3-time constant model of the SnO2 pH electrode from pH2 to pH12. 83
Table 3.7 Comparison of the modeled hysteresis width and measured hysteresis width, which actual total voltage excursion was 545.2 mV. 84
Table 4.1 Comparison of the systems of the drift calibration. 92
Table 4.2 Comparison of the methods of the drift calibration. 94
Table 4.3 Comparison of the practicability of the drift calibration. 96
Table 4.4 Comparison with original sensing properties and sensing properties, which were after drift calibration of three samples. 97
Table 4.5 Long-term stability of three samples after the drift calibration. 98
Table 4.6 Comparison of the hysteresis widths with various materials. 100
Table 4.7 Comparison of the normalized hysteresis widths with various materials. 101
Table 4.8 Specification of the SnO2 pH electrode. 102
[1] Y. Miao, J. Chen, K. Fang, “New technology for the detection of pH”, Journal of Biochemical and Biophysical Methods, vol.63, pp.1-9, 2005.
[2] R.P. Buck, S. Rondinini, A.K. Covington, F.G.K. Baucke, C.M.A. Brett, M.F. Camoes, M.J.T. Milton, T. Mussini, R. Naumann, K.W. Pratt, P. Spitzer, G.S. Wilson, “Measurement of pH. definition, standards, and procedures”, Pure and Applied Chemistry, vol.74, pp.2169-2200, 2002.
[3] M.A. Arnold, M.E. Meyerhoff, “Ion-selective electrodes”, Analytical Chemistry, vol.56, pp.20R-48R, 1984.
[4] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Transactions on Bio-medical Engineering, vol.MBE-17, pp.70-71, 1970.
[5] A. Fog, R.P. Buck, “Electronic semiconducting oxides as pH sensors”, Sensors and Actuators, vol.5, pp.137-146, 1984.
[6] K. Kreider, “Iridium oxide thin-film stability in high temperature corrosive solutions”, Sensors and Actuators B, vol.5, pp.165-169, 1991.
[7] P. Shuk, K.V. Ramanujachary, M. Greenblatt, “New metal-oxide- type pH sensors”, Solid State Ionics, vol.86-88, pp.1115-1120, 1996.
[8] A. Eftekhari, “pH sensor based on deposited film of lead oxide on aluminum substrate electrode”, Sensors and Actuators B, vol.88, pp.234-238, 2003.
[9] M. Arvand, M.F. Mousavi, M.A. Zanjanchi, M. Shamsipur, “Direct determination of triamterene by potentiometry using a coated wire selective electrode”, Journal of Pharmaceutical and Biomedical Analysis, vol.33, pp.975-982, 2003.
[10] W. Ehrfeld, “Electrochemistry and microsystems”, Electro- chimica Acta, vol.48, pp.2857-2868, 2003.
[11] L. Bousse, D. Hafeman, N. Tran, “Time-dependence of the chemical response of silicon nitride surfaces”, Sensors and Actuators B, vol.1, pp.361-367, 1990.
[12] P. Gimmel, K.D. Shierbaum, W. Gopel, H.H. van den Vlekkert, N.F. de Rooij, “Microstructural solid-state ion-sensitive mem- branes by thermal oxidation of Ta”, Sensors and Actuators B, vol.1, pp.345-349, 1990.
[13] J.C. Chou, C.N. Hsiao, “The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET”, Sensors and Actuators B, vol.66, pp.181-183, 2000.
[14] G. Steinhoff, M. Hermann, W.J. Schaff, L.F. Eastman, M. Stutzmann, M. Eickhoff, “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors”, Applied Physics Letters, vol.83, pp.177-179, 2003.
[15] K.G. Kreider, M.J. Tarlov, J.P. Cline, “Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides”, Sensors and Actuators B, vol.28, pp.167-172, 1995.
[16] H.K. Liao, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study of amorphous tin oxide thin films for ISFET applications”, Sensors and Actuators B, vol.50, pp.104-109, 1998.
[17] L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study on extended gate field effect transistors with tin oxide sensing membrane”, Materials Chemistry and Physics, vol.63, pp.19-23, 2000.
[18] Y.L. Chin, J.C. Chou, T.P. Sun, H.K. Liao, W.Y. Chung, S.K. Hsiung, “A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process”, Sensors and Actuators B, vol.75, pp.36-42, 2001.
[19] C.L. Wu, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study on SnO2/Al/SiO2/Si ISFET with a metal light shield”, Materials Chemistry and Physics, vol.63, pp.153-156, 2000.
[20] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate”, Sensors and Actuators B, vol.71, pp.106-111, 2000.
[21] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET”, Materials Chemistry and Physics, vol.70, pp.12-16, 2001.
[22] C.W. Pan, J.C. Chou, T.P. Sun, S.K. Hsiung, “Development of the tin oxide pH electrode by the sputtering method”, Sensors and Actuators B, vol.108, pp.863-869, 2005.
[23] D. Yu, Y.D. Wei, G.H. Wang, “Time-dependent response characteristics of pH-sensitive”, Sensors and Actuators B, vol.3, pp.279-285, 1991.
[24] P. Hein, P. Egger, “Drift behavior of ISFETs with Si3N4-SiO2 gate insulator”, Sensors and Actuators B, vol.13-14, pp.655-656, 1993.
[25] L. Bousse, S. Mostarshed, B. van der Schoot, N.F. de Rooij, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sensors and Actuators B, vol.17, pp.157-164, 1994.
[26] T. Matsuo, M. Esashi, “Methods of ISFET fabrication”, Sensors and Actuators, vol.1, pp.77-96, 1981.
[27] D.H. Kwon, B.W. Cho, C.S. Kim, B.K. Sohn, “Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET”, Sensors and Actuators B, vol.34, pp.441-445, 1996.
[28] A. Garde, J. Alderman, W. Lane, “Improving the drift and hysteresis of the Si3N4 pH response using RTP techniques”, Sensors and Materials, vol.9, pp.15-23, 1997.
[29] H. Tamura, K. Mita, A.Tanaka, M. Ito, “Mechanism of hydroxylation of metal oxide surfaces”, Journal of Colloid and Interface Science, vol.243, pp.202-207, 2001.
[30] C.C. Liu, B.C. Bocchiccio, P.A. Overmyer, M.R. Neuman, “A palladium-palladium oxide miniature pH electrode”, Science, vol.207, pp.188-189, 1980.
[31] H.N. McMurray, P. Douglas, D. Abbot, “Novel thick-film pH sensors based on ruthenium dioxide-glass composites”, Sensors and Actuators B, vol.28, pp.9-15, 1995.
[32] J.A. Mihell, J.K. Atkinson, “Planar thick-film pH electrodes based on ruthenium dioxide hydrate”, Sensors and Actuators B, vol.48, pp.505-511, 1998.
[33] M. Esashi, T. Matsuo, “Integrated micro muti ion sensor using field effect of semiconductor”, IEEE Transactions on Bio- Medical Engineering, vol.BME-25, pp.184-192, 1978.
[34] S. Jamasb, S. Collins, R.L. Smith, “A physical model for drift in pH ISFETs”, Sensors and Actuators B, vol.49, pp.146-155, 1998.
[35] S. Jamasb, S.D. Collins, R.L. Smith, “A physical model for threshold voltage instability in Si3N4-gate H+-sensitive FET’s (pH ISFET’s)”, IEEE Transactions on Electron Devices, vol.45, pp.1239-1245, 1998.
[36] H. Scher, E.W. Montroll, “Anomalous transit-time dispersion in amorphous soilds”, Physical Review B, vol.12, pp.2455-2477, 1975.
[37] G. Pfister, H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3”, Physical Review B, vol.15, pp.2062- 2083, 1977.
[38] J. Kakalios, R.A. Street, W.B. Jackson, “Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon”, Physical Review Letters, vol.59, pp.1037- 1040, 1987.
[39] D.T. Krick, P.M. Lenahan, J. Kanicki, “Electrically active point defects in amorphous silicon nitride: An illumination and charge injection study”, Journal of Applied Physics, vol.64, pp.3558- 3563, 1988.
[40] L. Bousse, P. Bergveld, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sensors and Actuators, vol.6, pp.65-78, 1984.
[41] P.A. Hammond, D.R.S. Cumming, “Performance and system-on- chip integration of an unmodified CMOS ISFET”, Sensors and Actuators B, In press, 2005.
[42] J. Hendrikse, W. Olthuis, P. Bergveld, “A method of reducing oxygen induced drift in iridium oxide pH sensors”, Sensors and Actuators B, vol.53, pp.97-103, 1998.
[43] R. Kuhnhold, H. Ryssel, “Modeling the pH response of silicon nitride ISFET devices”, Sensors and Actuators B, vol.68, pp.307-312, 2000.
[44] P. Woias, L. Meixner, P. Frostl, “Slow pH response effects of silicon nitride ISFET sensors”, Sensors and Actuators B, vol.48, pp.501-504, 1998.
[45] J.C. Chou, H.M. Tsai, C.N. Shiao, J.-S. Lin, “Study and simulation of the drift behavior of hydrogenated amorphous silicon gate pH-ISFET”, Sensors and Actuators B, vol.62, pp.97-101, 2000.
[46] J.L. Chiang, J.C. Chou, Y.C. Chen, G.S. Liau, C.C. Cheng, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor”, Japanese Journal of Applied Physics, vol.42, pp.4973-4977, 2003.
[47] J.C. Chou, K.Y. Huang, J.S. Lin, “Simulation of time-dependent effects of pH-ISFETs”, Sensors and Actuators B, vol.62, pp.88-91, 2000.
[48] A. Simonis, C. Ruge, M. Muller-Veggian, H. Luth, M.J. Schoning, “A long-term stable macroporous-type EIS structure for electrochemical sensor applications”, Sensors and Actuators B, vol.91, pp.21-25, 2003.
[49] L. Bousse, H.H. van den Vlekkert, N.F. de Roij, “Hysteresis in Al2O3-gate ISFETs”, Sensors and Actuators B, vol.2, pp.103-110, 1990.
[50] H.K. Liao, L.L. Chi, J.C. Chou, WY. Chung, T.-P. Sun, S.-K. Hsiung, “Study on pHpzc and surface potential of tin oxide gate ISFET”, Materials Chemistry and Physics, vol.59, pp.6-11, 1999.
[51] D.E. Yates, S. Levine, T.W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, Journal of the Chemical Society, Faraday Transactions I, vol.70, pp.1807- 1818, 1974.
[52] J.P. Xu, P.T. Lai, B. Han, W.M. Tang, “Determination of optimal insulator thickness for MISiC hydrogen sensors”, Solid-State Elec-tronics, vol.48, pp.1673-1677, 2004.
[53] J.C. Chou, C.Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET”, Materials Chemistry and Physics, Vol. 71, pp. 120-124, 2001.
[54] J.L. Brousseau, H. Bourque, A. Tessier, R.M. Leblance, “Electrical properties and topography of SnO2 thin films prepared by reactive sputtering”, Applied Surface Science, vol.108, pp.351-358, 1997.
[55] J.C. Chou, Y.F. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by sol-gel method”, Sensors and Actuators B, vol.86, pp.58-62, 2002.
[56] B. Palan, F.V. Santos, J.M. Karam, B. Courtois, M. Husak, “New ISFET sensor interface circuit for biomedical applications”, Sensors and Actuators B, vol.57, pp.63-68, 1999.
[57] A. Morgenshtin, L. Sdakov-Boreysha, U. Dinnar, “Wheatstone- Bridge readout interface for ISFET/REFET applications”, Sensors and Actuators B, vol.98, pp.18-27, 2004.
[58] S.S. Jan, Y.C. Chen, J.C. Chou, “Effect of Mg2+-dopant on the characteristics of lead titanate sensing membrane for ion- sensitive filed-effect transistors”, Sensors and Actuators B, vol.108, pp.883-887, 2005.
[59] C.N. Tsai, J.C. Chou, T.P. Sun, S.K. Hsiung, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode”, Sensors and Actuators B, vol.108, pp.877-882, 2005.
[60] H.C. Liao, “Novel calibration and compensation technique of circuit design for biosensor”, Master Thesis, Institute of Electronic Engineering, Chung Yuan Christian University, June, 2004.
[61] H.C.G. Ligtenberg, J.G.M. Leuveld, “ISFET-based measuring device and method for correcting drift”, United States Patent, Patent Number: 4,701,253, Date of Patent: October 20, 1987.
[62] S. Casans, A.E. Navarro, D. Munoz, E. Castro, A. Baldi, N. Abramova, “Novel voltage-controlled conditioning circuit applied to the ISFETs temporary drift and thermal dependency”, Sensors and Actuators B, vol.91, pp.11-16, 2003.
[63] S. Casans, D.R. Munoz, A.E. Navarro, A. Salazar, “ISFET drawbacks minimization using a novel electronic compensation”, Sensors and Actuators B, vol.99, pp.42-49, 2004.
[64] S. Jamasb, “An analytical technique for counteracting drift in ion-selective field effect transistors (ISFETs)”, IEEE Sensors Journal, vol.4, pp.795-801, 2004.
[65] J.L. Chiang, S.S. Jan, J.C. Chou, Y.C. Chen, “Study on temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide”, Sensors and Actuators B, vol.76, pp.624-628, 2001.
[66] S.S. Jan, Y.C. Chen, J.C. Chou, C.C. Cheng, C.T. Lu, “Nonideal factors of ion-sensitive field-effect transistor with lead titanate gate”, Japanese Journal of Applied Physics, vol.41, pp.6297- 6301, 2002.
[67] L.T. Yin, “Study of biosensors based on an ion sensitive field effect transistor”, Ph. D. Thesis, Institute of Electronic Engineering, Chung Yuan Christian University, June, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊