跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳裕興
研究生(外文):Yu-Shin Chen
論文名稱:史都沃特平台銑切工具機之複合適應控制研究
論文名稱(外文):Design of A Composite Adaptive Control for Gough-Stewart Platform Milling Machine
指導教授:丁鏞
指導教授(外文):Yung Ting
學位類別:博士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:115
中文關鍵詞:銑切工具機史都沃特平台複合適應控制
外文關鍵詞:composite adaptive controlmilling machineGough-Stewart platform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本文針對以史都沃特平台為基礎之銑切工具機,推導系統數學模式並含括慣性力、銑切力等之物理量,另結合濾波動力技巧,推導出鑑別銑切力切削參數之線性迴歸公式,建立含有參數估測新權重之複合適應控制,並以沿X軸平面端銑為例進行數值模擬,分析驗證其效益。平台數模上,涵蓋可動平台、六腳致動連桿等整體之運動學、動態力學,腳部連桿分成固定部、延伸部二項,並以適當之座標系組來描述其姿態轉動時各質心平移、連桿轉動之運動公式,在六腳致動連桿符合所提出假定物性條件下,平台數模得以簡化,且各慣性項係數公式內不需含有連桿轉動角度與角速度項,利用Euler-Lagrange method推導出之系統動態數模方便於參數估測及控制器設計。透過以主軸週轉時間來平均切削力,再結合濾波動力迴歸技巧推導出鑑別銑切力切削參數之線性迴歸公式,嵌入於複合適應控制內,免除加速度訊號之擷取需求,及避免力量量測回授高頻雜訊處理之困擾。複合適應控制之控制法則含入PID項,以提高切削加工之精度,而參數估測更新法則包含命令追蹤誤差及參數估測誤差資訊,而形成複合適應機制。分別對不同之控制增益及不同之材料予以進行模擬驗證。由非適應控制及多種情況之複合適應控制的模擬結果,驗證銑切工具機用史都沃特平台之複合適應控制架構無論在追蹤控制及參數估測收斂性能都良好,並暸解參數估測增益與權重及工件材料之影響關係,作為控制設計之重要參考。
This study presents a composite adaptive control of a Gough-Stewart platform-type milling machine. Kinematics and dynamic modeling of the platform, modeling of the cutting force, derivation of the linear regressive equation for estimating the cutting parameters, and design of a composite control with an appropriate estimator factor are included in this study. Several cases with different materials and estimation gain sets are simulated and analyzed.
The modeling of the platform contains both movable platform and six actuator legs. Each leg is decomposed into two parts: the fixed part and the extensible part. Using suitable coordinates and assumed matching conditions, both the translating and rotating motions are well defined, so that the dynamic model is simplified without including items of the angle and angular velocity of leg’s local rotation. Euler-Lagrange method is used to derive the dynamic modeling and design the adaptive control law.
Averaging the cutting forces of end-milling and using filtering dynamics regression technique, the linear regressive equation to identify (important or selected) parameters of the cutting forces is derived, and embedded in composite adaptive control without need of acceleration measurement. The control law includes PID terms to improve the accuracy of machining. The parameter adaptation law consists of the law of the estimator extracts information from both the tracking errors and prediction errors to construct a composite adaptation feature. By adding an appropriate factor in the side of prediction errors, we can adjust its weight.
Various estimation gains and materials under the same cutting conditions are investigated with simulation to verify the performance of composite adaptive control. The simulation results indicate that the proposed composite adaptive control can achieve good tracking performance and parameter estimation.
摘要 I
英文摘要 II
誌謝 III
目錄 IV
符號表 VI
圖目錄 IX
表目錄 XIII


第一章 緒論 1
1.1 前言與研究動機 1
1.2 文獻回顧 2
1.3 研究目的與本文架構 4

第二章 平台機構與數模 6
2.1 前言 6
2.2 機構描述 7
2.3 運動學 8
2.4 動態數模 17
2.4.1 可動下平台動位能 18
2.4.2 六腳動位能 20
2.4.3 總動態數學模式 21

第三章 平面端銑及銑切力數模 23
3.1 前言 23
3.2 銑切力數模 24

第四章 複合適應控制 29
4.1 前言 29
4.2 銑切力未知參數鑑別 30
4.2.1 線性迴歸 31
4.2.2 參數估測 32
4.3 複合適應控制 35

第五章 模擬分析 42
5.1 前言 42
5.2 程式推導及結構 42
5.3 平台機構參數 42
5.4 模擬分析 43
5.4.1 銑切力單刃法與主軸週轉平均法之模擬分析比較 46
5.4.2 非適應控制模擬結果 50
5.4.3 複合適應控制模擬結果 52
5.4.4 控制模擬結果分析比較 83
5.4.5 模擬分析結論 85

第六章 結論與未來展望 86
6.1 結論 86
6.2 未來展望 87

參考文獻 89
附錄 程式架構及推導說明 94

圖2-1 中原Gough-Stewart六軸銑切工具機 7
圖2-2 平台座標系 8
圖2-3 可動平台轉動座標系 10
圖2-4 SPBM腳部簡化圖 12
圖2-5 腳部座標系 13

圖3-1 切刃受力情況 25
圖3-2 切削相關角度定義 25
圖3-3 銑切過程區域種類 26

圖5-1 固定平台頂點配置 44
圖5-2 可動平台頂點配置 44
圖5-3 期望x與y 軸切削軌跡 45
圖5-4 期望x軸切削速度(進給速度) 45
圖5-5 單刃法力量扭矩 47
圖5-6 主軸週轉平均法力量扭矩 48
圖5-7 單刃法力量扭矩經移動平均化 48
圖5-8 單刃法平均與主軸週轉平均法之力量比較 49
圖5-9 單刃法平均與主軸週轉平均法之扭矩比較 50
圖5-10 非適應控制命令追蹤誤差 51
圖5-11 非適應控制輸入力量扭矩 51
圖5-12 Case_1命令追蹤誤差 53
圖5-13 Case_1之輸入力量扭矩 53
圖5-14 Case_1之參數估測誤差 54
圖5-15 Case_1之參數估測相關狀態變化 54
圖5-16 Case_2之命令追蹤誤差 55
圖5-17 Case_2之輸入力量扭矩 55
圖5-18 Case_2之參數估測誤差 56
圖5-19 Case_2之參數估測相關狀態變化 56
圖5-20 Case_3之命令追蹤誤差 57
圖5-21 Case_3之輸入力量扭矩 57
圖5-22 Case_3之參數估測誤差 58
圖5-23 Case_3之參數估測相關狀態變化 58
圖5-24 Case_4之命令追蹤誤差 59
圖5-25 Case_4之輸入力量扭矩 59
圖5-26 Case_4之參數估測誤差 60
圖5-27 Case_4之參數估測相關狀態變化 60
圖5-28 Case_5之命令追蹤誤差 61
圖5-29 Case_5之輸入力量扭矩 61
圖5-30 Case_5之參數估測誤差 62
圖5-31 Case_5之參數估測相關狀態變化 62
圖5-32 Case_6之命令追蹤誤差 63
圖5-33 Case_6之輸入力量扭矩 63
圖5-34 Case_6之參數估測誤差 64
圖5-35 Case_6之參數估測相關狀態變化 64
圖5-36 Case_7之命令追蹤誤差 65
圖5-37 Case_7之輸入力量扭矩 65
圖5-38 Case_7之參數估測誤差 66
圖5-39 Case_7之參數估測相關狀態變化 66
圖5-40 Case_8之命令追蹤誤差 67
圖5-41 Case_8之輸入力量扭矩 67
圖5-42 Case_8之參數估測誤差 68
圖5-43 Case_8之參數估測相關狀態變化 68
圖5-44 Case_9之命令追蹤誤差 69
圖5-45 Case_9之輸入力量扭矩 69
圖5-46 Case_9之參數估測誤差 70
圖5-47 Case_9之參數估測相關狀態變化 70
圖5-48 Case_10之命令追蹤誤差 71
圖5-49 Case_10之輸入力量扭矩 71
圖5-50 Case_10之參數估測誤差 72
圖5-51 Case_10之參數估測相關狀態變化 72
圖5-52 Case_11之命令追蹤誤差 73
圖5-53 Case_11之輸入力量扭矩 73
圖5-54 Case_11之參數估測誤差 74
圖5-55 Case_11之參數估測相關狀態變化 74
圖5-56 Case_12之命令追蹤誤差 75
圖5-57 Case_12之輸入力量扭矩 75
圖5-58 Case_12之參數估測誤差 76
圖5-59 Case_12之參數估測相關狀態變化 76
圖5-60 Case_13之命令追蹤誤差 77
圖5-61 Case_13之輸入力量扭矩 77
圖5-62 Case_13之參數估測誤差 78
圖5-63 Case_13之參數估測相關狀態變化 78
圖5-64 Case_14之命令追蹤誤差 79
圖5-65 Case_14之輸入力量扭矩 79
圖5-66 Case_14之參數估測誤差 80
圖5-67 Case_14之參數估測相關狀態變化 80
圖5-68 Case_15之命令追蹤誤差 81
圖5-69 Case_15之輸入力量扭矩 81
圖5-70 Case_15之參數估測誤差 82
圖5-71 Case_15之參數估測相關狀態變化 82
圖5-72 非全切削區切削面積狀況 85

表5-1 平台機構及通用控制參數 46
表5-2 複合適應控制模擬參數設定值 52
[1]Fichter, E. F., “A Stewart Platform-based Manipulator: General Theory and Practical Construction”, IEEE Journal of Robotics Research, v 5, n 2, pp 157-182, Summer 1986.
[2]Nanua, P., Waldron, K. J. and Murthy, V., “Direct Kinematic Solution of a Stewart Platform”, IEEE Trans. on Robotics and Automation, v 6, n 4, pp 438-444, Aug 1990.
[3]Do, W. Q. D. and Yang, D. C. H., “Inverse Dynamics of a Platform type of Manipulating Structure”, ASME Paper 86-DET-94, 1986.
[4]Nguyen, C. C., Antrazi, S. S. and Zhou, Z.-L., “Adaptive Control of a Stewart Platform-Based Manipulator”, Journal of Robotic Systems, v 10, n 5, pp 657-687, July 1993.
[5]Liu, K., Lebret, G., Lewis, F. L. and Taylor, D., “Modeling and Control of a Stewart platform manipulator”, DSC-Vol. 33, Proc. Symposium on Control of Systems with Inexact Dynamic models, Atlanta, Georgia, ASME, pp 83–89, 1991.
[6]Lebret, G., Liu, K. and Lewis, F. L., “Dynamic Analysis and Control of a Stewart Platform Manipulator”, Journal of Robotic Systems, v 10, n 5, pp 629-655, July 1993.
[7]Liu, K., Lebret, G., Lowe, J. A. and Lewis, F. L., “Control of a Stewart-platform based robotic milling cell”, DSC-Vol. 39, Advanced Control Issues for Robot Manipulators. New York: ASME, pp 23–30, 1992.
[8]Ji, Z., “Study of the effect of leg inertia in Stewart platforms”, Proc. Of the 1993 IEEE Inter. Conf. on Robotics and Automation, pp 121-126.
[9]Lee, S.-H., Song, J.-B., Choi, W.-C. and Hong, D., “Controller design for a Stewart platform using small workspace characteristics”, Proc. of the 2001 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, pp 2184-2189.
[10]Khalil, W. and Guegan, S., “A novel solution for the dynamic modeling of Gough-Stewart manipulators”, Proc. Of the 2002 IEEE Inter. Conf. on Robotics and Automation, v 1, pp 817-822.
[11]Liu, M.-J., Li, C.-X. and Li, C.-N., “Dynamic analysis of the Gough-Stewart platform manipulator,” IEEE Trans. on Robotics and Automation, v 16, pp 94–98, Feb 2000.
[12]Yang, H., Wu, S., et al. “Study on dynamics for Stewart platform involving effect of driving legs inertia”, Zhongguo Jixie Gongcheng/China Mechanical Engineering, v 13, n 12, pp 1009-1012, Jun 2002.
[13]Kazuhiro, K., Okuda, M., et al.;“ Input/output Force Analysis of Stewart Platform Type of Manipulators”, Proc. of the 1993 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, pp 1666-1673
[14]Li, D. and Salcudean, S. E., “Modeling, Simulation, and Control of a Hydraulic Stewart Platform”, Proc. Of the 1997 IEEE Inter. Conf. on Robotics and Automation, v 4, pp 3360-3366.
[15]Honegger, M., Codourey, A. and Burdet, E., “Adaptive control of the hexaglide, a 6 dof parallel manipulator”, IEEE Conf. on Robotics and Automation, pp543-548, 1997
[16]Kang, J. Y., Kim, D. H., et al., “Robust Tracking Control of Stewart Platform”, Proc. of 35th Conf. on Decision and Control, Kobe, Japan , pp 3014-3019, Dec 1996.
[17]Kim, N. I. and Lee, C. W., “High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control”, Proc. Of the 1998 IEEE Inter. Conf. on Robotics and Automation, v 3, pp 2716-2721.
[18]許智欽, “液壓驅動史都華平台之模型建構與動態分析”, 國立台灣大學電機工程學系87年碩士論文.
[19]劉景明, “六自由度史都華平臺之動力學分析與控制”, 逢甲大學自動控制工程學系88年碩士論文.
[20]Martellotti, M. E., “A analysis of the milling process”, Journal of Eng. for Industry, Trans. of the ASME, pp 667-700, 1941.
[21]Koenigsberger, F. and Sabberwal, A. J. P., “Chip section and cutting force during the milling operation”, CIRP Annals, 1960.
[22]Koenigsberger, F. and Sabberwal, A. J. P., “An investigation into the cutting force pulsation during milling operations”, Inter. Journal of Mach. Tools Des. Res., pp 15-33, 1961.
[23]Tlusty, J. and MacNeil, P., “Dynamics of cutting forces in end milling”, CIRP Annals, pp 21-25, 1975.
[24]Lauderbaugh, L. K. and Ulsoy, A. G., “Dynamic modeling for control of the milling process”, Journal of Eng. for Industry, Trans. of the ASME, v 110, n 4, pp 367-375, Nov 1988.
[25]Fu, H. J., DeVor, R. E. and Kapoor, S. G., “A mechanistic model for the prediction of the force system in face milling operations”, Journal of Eng. for Industry, Trans. of the ASME, v 106, n 1, pp 81-88, Feb 1984.
[26]Kim, H. S. and Ehmann, K.F., “A cutting force model for face milling operations”, Inter. Journal of Mach. Tools & Manufacture, v 33, n 5, pp 651-673, Oct 1993.
[27]Bayoumi, A. E., Yucesan, G. and Kendall, L. A., “An analytic mechanistic cutting force model for milling operations: a theory and methodology”, Journal of Eng. for Industry, Trans. of the ASME, v 116, n 3, pp 324-330, Aug 1994.
[28]Bayoumi, A. E., Yucesan, G. and Kendall, L. A., “An analytic mechanistic cutting force model for milling operations: a case study of helical milling operation”, Journal of Eng. for Industry, Trans. of the ASME, v 116, n 3, pp 331-339, Aug 1994.
[29]Zheng, L., Li, Y. and Liang, S.Y., “Generalized model of milling forces”, Inter. Journal of Advanced Manufacturing Tech., v 14, n 3, pp 160-171, 1998.
[30]Martin, K. F. and Ebrahimi, M., “Modelling and simulation of the milling action”, Proc. Instn. Mech. Engrs., v 213, I 6, pp 539-554, 1999.
[31]Lauderbaugh, L. K. and Ulsoy, A. G., “Model reference adaptive force control of in milling”, Journal of Eng. for Industry, Trans. of the ASME, v 111, n 2,p p 13-21, 1989.
[32]Nolzen, H. and Isermann, R., “Fast adaptive cutting force control for milling operation”, Proc. of the 1995 IEEE Conf. on Control Applications, pp760-765.
[33]Jiang, Z. B., “Design and Development of Stewart-Platform CNC Machine” Master’s Thesis, Department of Mechanical Engineering., Chung Yuan Christian University, 2000.
[34]康淵, “六自由度Stewart平台式電腦數控工具機之研發(3)”, 國科會精簡報告, NSC89-2218-E-033-007, 2001.
[35]Schilling, R. J., “Fundamentals of Robotics: analysis & control”, Prentice Hall, 1990.
[36]Lewis, F. L., Abdallah, C. T. and Dawson, D. M., “Control of Robot Manipulators”, Macmillian, 1993.
[37]Ferraresi C., et. al.,“Static and Dynamic Behavior of a High Stiffness Stewart Platform-Based Force/Torque Sensor”, Journal of Robotic Systems 12(12), pp 883-893, 1995.
[38]Astrom, K. J. and Wittenmark B., “Adaptive Control”, Addison-Wesley, 1989.
[39]Slotine, J. J. E. and Li, W., “Applied Nonlinear Control”, Prentice Hall, 1991.
[40]Khalil, W. and Restrepo, P. P., “An Efficient Alogrithm for the Calculation of the Filtered Dynamic Model of Robots”, IEEE Inter. Conf. on Robotics and Automation, pp 535-540, 1996.
[41]Nijmeijer, H. and Schaft, A. J. van der, “Nonlinear Dynamical Control Systems”, Springer-Verlag, 1990.
[42]Isidori, A., “Nonlinear Control Systems”, Springer-Verlag, 1995.
[43]丁鏞,陳裕興,劉源良,王世明,張義鋒,康淵, “史都渥特平台之複合適應控制研究”, 中國航空太空學會第四十屆學術研討會, 台中, pp 529-536, 民國87年12月.
[44]Ting Y., Chen Y.-S. and Wang, S.-M, “Task-space control algorithm for Stewart platform”, Proc. 38th IEEE Conf. Dec. Contr. v 4, pp 3857–3862, 1999.
[45]Ting Y., Chen Y.-S. and Jar, H.-C., “Modeling and Control for A Gough-Stewart Platform CNC Machine”, Proc. Of the 2004 IEEE Inter. Conf. on Robotics and Automation, v 1, pp 535-540.
[46]Ting Y., Chen Y.-S. and Jar, H.-C., “Modeling and Control for A Gough-Stewart Platform CNC Machine”, Journal of Robotic Systems, accepted in 28 June 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳秀芳、蔡芸芳、賴其萬、范德鑫(2001).癲癇病患生活品質之探討.慈濟醫學,13(1),47-54。
2. 許敏桃(2001).台灣老年婦女心理社會發展.護理雜誌,48(5),5-10。
3. 許敏桃(2001).台灣老年婦女心理社會發展.護理雜誌,48(5),5-10。
4. 施美雲(1990).探討一位癲癇病人的心理反應.護理雜誌,37(4),59-64。
5. 林耀盛、吳英璋(1997).慢性病的個人控制觀:自主與依賴之間.應用心理研究,3,105-128。
6. 林耀盛、吳英璋(1997).慢性病的個人控制觀:自主與依賴之間.應用心理研究,3,105-128。
7. 施美雲(1990).探討一位癲癇病人的心理反應.護理雜誌,37(4),59-64。
8. 林耀盛、吳英璋(2001).慢性病患者的意義建構及其行動策略:以糖尿病為例.中華心理衛生學刊,14(4),31-58。
9. 林耀盛、吳英璋(2001).慢性病患者的意義建構及其行動策略:以糖尿病為例.中華心理衛生學刊,14(4),31-58。
10. 朱復禮(1983a).癲癇之現代醫學觀.臨床醫學,12(3),193-196。
11. 朱復禮(1983a).癲癇之現代醫學觀.臨床醫學,12(3),193-196。
12. 陳秀芳、蔡芸芳、賴其萬、范德鑫(2001).癲癇病患生活品質之探討.慈濟醫學,13(1),47-54。
13. 曾元孚、張宏旭(2002).癲癇的分類與診斷.當代醫學,29(1),38-45。
14. 曾元孚、張宏旭(2002).癲癇的分類與診斷.當代醫學,29(1),38-45。
15. 楊美賞、鄭美蕙、李美宜(1986).運用華盛頓癲癇心理社會量表對癲癇病人心理社會適應問題之評估.高雄醫學科學雜誌,2,33-42。