跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張秀桃
研究生(外文):Hsiu-Tao Chang
論文名稱:晶圓級封裝之無鉛銲錫的溫度循環/熱機械行為
論文名稱(外文):Temperature Cycling Loading/ Thermo-Mechanical Behaviors on Lead-Free Solder Joints of Wafer Level Chip Scale Packages
指導教授:鍾文仁鍾文仁引用關係
指導教授(外文):Wen-Ren Jong
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:122
中文關鍵詞:無鉛銲料田口方法有限元素分析溫度循環晶圓級封裝
外文關鍵詞:WLCSPTaguchi methodThe finite analysisLead-free solderTemperature cycling
相關次數:
  • 被引用被引用:2
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
封裝小型化及無鉛化使材料與製程參數面臨很大的衝擊,材料的選擇各有擁護者卻無法統一。在可靠度分析上,以往因電腦設備不足一直使用二維模型進行預測,但這樣會把複雜的問題簡單化,本文針對晶圓級封裝不同維度的模型及各種簡化模型做一事先的討論再進行研究分析;根據分析結果,採用八分之一簡化對稱模型配合有限元素分析軟體模擬及田口方法的使用,利用 直交表考慮升溫率、高溫溫度、低溫溫度、高溫恆溫時間及低溫恆溫時間共五個因素,每個因素四個水準,進行潛應變、塑性應變及塑性-潛應變三個實驗;接著,更進一步針對晶圓級封裝錫球之二元及三元無鉛銲料設定四種不同的溫度循環,進行熱機械行為探討。結果顯示不同維度之分析,二維模型的結果會與三維模型差一個值階,因而本文重點會在多種三維模型中選出對可靠度評估最為保守的模型進行一系列的研究與探討:其一,在三組田口實驗中,發現影響錫球應變範圍之最主要因素為溫度範圍;其二,在熱機械行為的分析中,由四種不同溫度負載中也可以整理出溫度範圍是影響變形範圍最為重要的因素,而升溫率對彈-塑-潛應變略有影響,這與田口實驗結果一致。本研究使用文獻所提供無鉛銲料之材料性質,做一連串的分析與探討,主要目的除了想更瞭解無鉛銲料的資訊,也期待結果供給未來訂定溫度循環參數做一參考。
The miniaturized and unleaded packages in IC manufacturing made a tremendous impact. Each material of solder joints used to IC packages has various supporters, but it cannot be incorporated and integrated identically at present. The finite element simulation with 2D model is hard to simplify in reliability analysis. First, this study investigates different models with 2D and 3D. In accordance with the result, it adopts one-eighth model to analyze with the finite element software and Taguchi method. The orthogonal array of is utilized to probed the effects and behaviors of strain under five temperature loading parameters of temperature ramp rate, high and low dwell temperature, and dwell temperature time. Furthermore, the study investigates thermal mechanical behavior of the four solder joint materials under four temperature loading. The result shows that 2D model differs from 3D model in one order. This study selects one-eighth model in all kinds of 3D model to estimate the reliability. In the serious study, the temperature range is the main factor to the magnitude of the strain range from the Taguchi experiment. Second, it can be found that the temperature range is the most significant factor on elastic-plastic-creep analysis under four temperature loadings, and the temperature ramp rate affects slightly. This result is the same as the Taguchi experiment. The purpose in serious study is to provide more information of the thermal mechanical behavior of lead-free solder toward the standard parameter of thermal cycling test in the future.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 晶圓級封裝 2
1-3 綠色材料與環境保護 3
1-4 錫球的可靠度工程 7
1-5 研究動機與目的 7
1-6 文獻回顧 8
1-7 本文架構 9
第二章 模型簡化與文獻驗證 11
2-1 簡介 11
2-2 理論基礎 11
2-2-1 材料性質 11
2-2-2 彈性與塑性 12
2-2-3 降伏條件 15
2-2-4 硬化法則 15
2-2-5 潛變 16
2-2-6 熱循環測試 17
2-3 CAE分析 19
2-3-1 基本假設 19
2-3-2 材料參數 19
2-3-3 模型與結構 20
2-3-4 負載及邊界條件 23
2-4 結果驗證 26
2-4-1 2D遲滯迴圈 26
2-4-2 2D潛剪應力 27
2-4-3 2D潛剪應變 28
2-4-4 3D遲滯迴圈 28
第三章 探討溫度循環對晶圓級封裝之無鉛銲錫的影響 31
摘要 31
3-1 簡介 32
3-2 理論基礎 33
3-2-1 實驗設計 33
3-2-2 田口方法 34
3-2-3 品質計量法 34
3-2-4 干擾因子 35
3-2-5 ANOVA分析 36
3-3 CAE分析 37
3-3-1 基本假設 37
3-3-2 材料性質 38
3-3-3 模型結構 39
3-3-4 邊界條件 41
3-3-5 實驗規劃 42
3-4 結果討論 46
3-5 結論 51
第四章 The Influence of Temperature Cycling Loading on Lead-Free Solder Joints of Wafer Level Chip Scale Packages by Taguchi Method 53
ABSTRACT 53
4-1 Preface 54
4-2 Theory of Analysis 56
4-2-1 Design of Experiment 56
4-2-2 Taguchi Method 56
4-2-3 Quality Characteristics 57
4-2-4 Noise Factor 58
4-2-5 ANOVA 58
4-3 CAE Analysis 60
4-3-1 Basic Assumptions 60
4-3-2 Material Properties 60
4-3-3 Geometrical Model and FEM Model 62
4-3-4 Loading and Boundary Conditions 63
4-3-5 Design of Experiment 64
4-4 Results and Discussions 69
4-5 Conclusions 74
第五章 晶圓級封裝之無鉛銲錫的熱機械行為比較 76
摘要 76
5-1 簡介 77
5-2 理論基礎 78
5-2-1 總應變 78
5-2-2 應力應變分析 78
5-3 CAE分析 79
5-3-1 基本假設 79
5-3-2 材料性質 79
5-3-3 模型結構 80
5-3-4 邊界條件及負載 82
5-4 結果討論 84
5-5 結論 94
第六章 Comparative Study of Elastic-Plastic-Creep Behaviors on Wafer Level Chip Scale Packages with Lead-Free Solder Joints 96
ABSTRACT 96
6-1 Preface 97
6-2-1 Total Strain 98
6-2-2 Stress-Strain Analysis 99
6-2 CAE Analysis 100
6-3-1 Basic Assumptions 100
6-3-2 Material Properties 100
6-3-3 Geometrical Model and FEM Model 102
6-3-4 Loading and Boundary Conditions 104
6-3 Results and Discussions 106
6-4 Conclusions 116
第七章 結論與未來展望 118
7-1 結論 118
7-2 未來展望 118
參考文獻 119
簡 歷 122

圖目錄
圖1-1 各產業中含鉛比率 4
圖1-2 電子產品中含鉛比率 4
圖2-1 應力應變曲線 14
圖2-2 彈塑性模型 14
圖2-3 降伏軌跡圖 15
圖2-4 錫球變形示意圖 18
圖2-5 模型尺寸圖 21
圖2-6 模型對角線剖面及錫球剖面尺寸圖 21
圖2-7 八分之一錫球分佈示意圖 21
圖2-8 2D模型網格圖 22
圖2-9 3D模型網格圖 23
圖2-10 溫度循環歷程 24
圖2-11 2D模型邊界條件 25
圖2-12 3D模型邊界條件 26
圖2-13 62SN-36PB-2AG潛剪應力對潛剪應變遲滯迴圈 27
圖2-14 96.5SN-3.5AG潛剪應力對潛剪應變遲滯迴圈 27
圖2-15 100IN潛剪應力對潛剪應變遲滯迴圈 27
圖2-16 潛剪應力對時間 28
圖2-17 潛剪應變對時間 28
圖2-18 3D模型的遲滯迴圈 30
圖2-19 各模型比較圖 30
圖3-1 模型尺寸圖 40
圖3-2 模型剖面尺寸圖 40
圖3-3 八分之一模型示意圖 40
圖3-4 八分之一模型網格圖 41
圖3-5 模型邊界條件 42
圖3-6 之16組實驗設定 45
圖3-7 潛應變實驗之因子回應圖( 比) 47
圖3-8 塑性應變實驗之因子回應圖( 比) 49
圖3-9 塑性-潛應變實驗之因子回應圖( 比) 51
FIGURE 4-1 THE DIMENSION AND SCHEMATIC OF A CHIP MODEL ON WLCSP 62
FIGURE 4-2 THE CROSS-SECTION OF A CHIP ON WLCSP AND DIMENSIONS OF THE SOLDER JOINT 62
FIGURE 4-3 DISTRIBUTION OF SOLDER JOINT OF ONE-EIGHTH MODEL OF A CHIP ON WLCSP ASSEMBLY 63
FIGURE 4-4 FINITE ELEMENT MESHES OF ONE-EIGHTH MODEL 63
FIGURE 4-5 B.CS OF ONE-EIGHTH MODEL 64
FIGURE 4-6 EXPERIMENT SETTING OF 16 RUNS 68
FIGURE 4-7 RESPONSE GRAPH OF THE CREEP EXPERIMENT 70
FIGURE 4-8 RESPONSE GRAPH OF THE PLASTIC EXPERIMENT 72
FIGURE 4-9 RESPONSE GRAPH OF THE ELASTIC-PLASTIC-CREEP EXPERIMENT 74
圖5-1 模型尺寸圖 81
圖5-2 模型剖面尺寸圖 81
圖5-3 八分之一錫球分佈示意圖 82
圖5-4 八分之一模型網格圖 82
圖5-5 八分之一模型邊界條件 83
圖5-6 溫度循環歷程 84
圖5-7 負載一之角落錫球在4158秒的等效總應變 85
圖5-8 負載一之角落錫球在7758秒的等效總應變 85
圖5-9 負載一之角落錫球在11358秒的等效總應變 86
圖5-10 負載一之角落錫球在14958秒的等效總應變 86
圖5-11 負載一之角落錫球在18558秒的等效總應變 87
圖5-12 63SN-37PB之等效遲滯迴圈圖 88
圖5-13 96.3SN-3.5AG之等效遲滯迴圈圖 88
圖5-14 95.5SN-3.8AG-0.7CU之等效遲滯迴圈圖 89
圖5-15 95.5SN-3.9AG-0.6CU之等效遲滯迴圈圖 89
圖5-16 等效塑性變形圖 91
圖5-17 等效潛變變形圖 92
圖5-18 等效應力圖 92
圖5-19 第五循環塑性變形量 93
圖5-20 第五循環之潛變變形量 94
圖5-21 第五循環之總變形量 94
FIGURE 6-1 THE DIMENSION AND SCHEMATIC OF A CHIP MODEL ON WLCSP 103
FIGURE 6-2 THE CROSS-SECTION OF A CHIP ON WLCSP AND DIMENSIONS OF THE SOLDER JOINT 103
FIGURE 6-3 DISTRIBUTION OF SOLDER JOINT OF ONE-EIGHTH MODEL OF A CHIP ON WLCSP ASSEMBLY 103
FIGURE 6-4 FINITE ELEMENT MESHES OF ONE-EIGHTH MODEL 104
FIGURE 6-5 B.CS OF ONE-EIGHTH MODEL 104
FIGURE 6-6 TEMPERATURE CYCLE HISTORY WITH VARIOUS TEMPERATURE LOADING RANGES 106
FIGURE 6-7 EQUIVALENT TOTAL STRAIN CONTOURS IN THE CORNER SOLDER JOINT AT 4158 SEC WITH FOUR SOLDER ALLOYS ON LOADING-1 107
FIGURE 6-8 EQUIVALENT TOTAL STRAIN CONTOURS IN THE CORNER SOLDER JOINT AT 7758 SEC WITH FOUR SOLDER ALLOYS ON LOADING-1 107
FIGURE 6-9 EQUIVALENT TOTAL STRAIN CONTOURS IN THE CORNER SOLDER JOINT AT 11358 SEC WITH FOUR SOLDER ALLOYS ON LOADING-1 108
FIGURE 6-10 EQUIVALENT TOTAL STRAIN CONTOURS IN THE CORNER SOLDER JOINT AT 14958 SEC WITH FOUR SOLDER ALLOYS ON LOADING-1 108
FIGURE 6-11 EQUIVALENT TOTAL STRAIN CONTOURS IN THE CORNER SOLDER JOINT AT 18558 SEC WITH FOUR SOLDER ALLOYS ON LOADING-1 109
FIGURE 6-12 EQUIVALENT STRESS AND TOTAL STRAIN HYSTERESIS LOOPS WITH FOUR TEMPERATURE LOADING FOR 63SN-37PB CORNER SOLDER JOINT 110
FIGURE 6-13 EQUIVALENT STRESS AND TOTAL STRAIN HYSTERESIS LOOPS WITH FOUR TEMPERATURE LOADING FOR 96.5SN-3.5AG CORNER JOINT 110
FIGURE 6-14 EQUIVALENT STRESS AND TOTAL STRAIN HYSTERESIS LOOPS WITH FOUR TEMPERATURE LOADING FOR 95.5SN-3.8AG-0.7CU CORNER JOINT 111
FIGURE 6-15 EQUIVALENT STRESS AND TOTAL STRAIN HYSTEREIS LOOPS FOR 95.5SN-3.9AG-0.6CU CORNER SOLDER JOINT 111
FIGURE 6-16 EQUIVALENT PLASTIC STRAIN TIME-HISTORY FOR FOUR ALLOYS AT CORNER SOLDER JOINT 113
FIGURE 6-17 EQUIVALENT CREEP STRAIN TIME-HISTORY FOR FOUR ALLOYS AT CORNER SOLDER JOINT 114
FIGURE 6-18 EQUIVALENT STRESS TIME-HISTORY FOR FOUR ALLOYS AT CORNER SOLDER JOINT 114
FIGURE 6-19 HISTOGRAM OF EQUIVALENT PLASTIC STRAIN RANGE OF THE FIFTH TEMPERATURE CYCLE FOR FOUR OF LOADING AND SOLDER ALLOYS AT THE CORNER SOLDER JOINT 115
FIGURE 6-20 HISTOGRAM OF EQUIVALENT CREEP STRAIN RANGE OF THE FIFTH TEMPERATURE CYCLE FOR FOUR OF LOADING AND SOLDER ALLOYS AT THE CORNER SOLDER JOINT 116
FIGURE 6-21 HISTOGRAM OF EQUIVALENT TOTAL STRAIN RANGE OF THE FIFTH TEMPERATURE CYCLE FOR FOUR OF LOADING AND SOLDER ALLOYS AT THE CORNER SOLDER JOINT 116

表目錄
表2-1 材料性質 20
表2-2 潛變方程式 20
表2-3 96.5SN-3.5AG各循環剪潛變變形量 30
表3-1 材料性質 38
表3-2 降伏應力 39
表3-3 穩態潛變方程式參數 39
表3-4 控制因子水準設定 43
表3-5 干擾因子 43
表3-6 實驗設計直交表 43
表3-7 潛應變實驗結果數據 46
表3-8 潛應變實驗之因子回應表( 比) 47
表3-9 潛應變實驗之ANOVA分析( 比) 47
表3-10 塑性應變實驗結果數據 48
表3-11 塑性應變實驗因子回應表( 比) 48
表3-12 塑性應變實驗之ANOVA分析( 比) 49
表3-13 塑性-潛應變實驗分析數據 50
表3-14 塑性-潛應變實驗之因子回應表( 比) 50
表3-15 塑性-潛應變實驗之分析( 比) 51
TABLE 4-1 MATERIAL PROPERTIES OF THE WLCSP ASSEMBLY 61
TABLE 4-2 YIELDING STRESS OF THREE LEAD-FREE SOLDER ALLOYS 61
TABLE 4-3 ANSYS INPUT FOR IMPLICIT CREEP ANALYSIS(CREEP MODEL 8) 61
TABLE 4-4 FACTORS AND LEVELS 65
TABLE 4-5 NOISE FACTORS 66
TABLE 4-6 THE -ORTHOGONAL ARRAYS 66
TABLE 4-7 RESULTS OF CREEP EXPERIMENT 69
TABLE 4-8 RESPONSE TABLE OF THE CREEP EXPERIMENT 70
TABLE 4-9 THE ANOVA OF THE CREEP EXPERIMENT 70
TABLE 4-10 RESULTS OF THE PLASTIC EXPERIMENT 71
TABLE 4-11 RESPONSE TABLE OF THE PLASTIC EXPERIMENT 72
TABLE 4-12 THE ANOVA OF THE PLASTIC EXPERIMENT 72
TABLE 4-13 RESULTS OF THE PLASTIC-CREEP EXPERIMENT 73
TABLE 4-14 RESPONSE TABLE OF THE PLASTIC-CREEP EXPERIMENT 74
TABLE 4-15 THE ANOVA OF THE ELASTIC-PLASTIC-CREEP EXPERIMENT 74
表5-1 材料性質 80
表5-2 降伏應力 80
表5-3 穩態潛變方程式參數 80
TABLE 6-1 MATERIAL PROPERTIES OF THE WLCSP ASSEMBLY 101
TABLE 6-2 YIELDING STRESS OF FOUR SOLDER ALLOYS 102
TABLE 6-3 ANSYS INPUT FOR IMPLICIT CREEP ANALYSIS(CREEP MODEL 8) 102
[1]D. Napp, Lead-Free Interconnect Materials for the Electronic Industry, the 27th International SAMPE Technical Conference, P.342
[2]J. H. Lau, W. Dauksher, and J. Smetana, HDPUG’s Design for Lead-Free Solder Joint Reliability of High-Density Packages.
[3]R. Darveaux, and K. Banerji(1991), Fatigue Analysis of Flip Chip Assemblies Using Thermal Stress Simulations and a Coffin-Manson Relation, , 41st Electronic Components and Technology Conference, pp.797-805.
[4]H. Mavoori, and J. Chin(1995), Reliability, Lifetime Prediction and Accelerated Testing of Prospective Alternatives to Lead Based Solders, Electronic Components and Technology Conference, pp.990-998.
[5]J. P. M. Clech(1996), Solder Reliability Solutions: From LCCCS’ To Area-Array Assemblies, National Electronic Packaging and Production Conference-Proceedings of the Technical Program (West and East), 3: 1665-1680
[6]Q. Yu, and M. Shiratori(1997), Fatigue Strength Prediction of Microelectronic Solder Joints Under Thermal Cyclic Loading, IEEE Trans. Component and Packaging Manufacturing Technology, Part A, 20(3), pp.226-273.
[7]B. Z. Hong(1998), Thermal Fatigue Analysis of a CBGA Package with Lead-free Solder Fillets, InterSociety Conference on Thermal Phenomena, pp. 205-211.
[8]A. Mertol(2000), Application of the Taguchi Method to Chip Scale Packaging(CSP) Design, IEEE Transactions on Advanced Packaging, 23(2):266-276.
[9]S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, and B. Michel(2001), Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders-Experiments on Bulk Specimens and Flip-Chip Joints, 2001 Electronic Components and Technology Conference, pp.890-902
[10]Z. Ghaffarian, and N. P. Kim(2001), Effect of Thermal Cycling Ramp Rate on CSP Assembly Relability, Electronic Components and Technology Conference.
[11]J. H. Lau, S. G.. Pan, and C. Chang(2002), Creep Analysis of Wafer Level Chip Scale Package(WLCSP) With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints and Microvia Build-Up Printed Circuit Board, Transactions of the ASME, Journal of Electronic Packaging, 124:69-76.
[12]J. H. Lau, Z. Mei, and S. Pang(2002), Creep Analysis and Thermal-Fatigue Life Prediction of the Lead-Free Solder Sealing of a Photonic Switch, ASME Journal of Electronic Packaging, 120, pp.403-410.
[13]J. H. L Pang, and T. H. Low(2002), Modeling Thermal Cycling And Thermal Shock Tests For FCOB, Inter Society Conference on Thermal Phenomena, pp.987-992.
[14]J. Pitarresi, S. Chaparala, and B. Sammakia(2002), A Parametric Solder Joint Reliability Model for Wafer Level-Chip Scale Package, Electronic Components and Technology Conference, 2002, pp.1323-1328.
[15]C. J. Zhai, Sidharth, R. BlishⅡ(2003), Board Level Solder Reliability vs. Ramp Rate & Dwell Time During Temperature Cycling, Annual International Reliability Physics Symposium, 2003, pp.447-451.
[16]J. H. L. Pang, P. T. H. Low, and B. S. Xiong(2004), Lead-Free 96.5-3.8Ag-0.7Cu Solder Joint Reliability Analysis For Micro-BGA Assembly, Inter Society Conference on Thermal Phenomena,2004, pp.131-136.
[17]J. H. L. Pang, B.S. Xiong, and F. X. Che(2004), Modeling Stress Strain Curves For Lead-Free 96.5Sn-3.8Ag-0.7Cu Solder, Int. Conf. on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, 2004, pp.449-453.
[18]P. T. Vianco, J. A. Rejent, and A. C. Kilgo(2003), Time-Independent Mechanical and Physical Properties of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder, Journal of Electronic Material, 32(3), pp.142-151.
[19]C. Thanachayanont, and N. Ramungul(2002), Low-Cost Lead-Free Solder for EE Industries, IEEE, pp.1213-1218.
[20]J.H. Lau, S. W. R. Lee(2002), Modeling and Analysis of 96.5Sn-3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board, IEEE Transactions on Components and Packaging Technology, 25(1), pp.51-54.
[21]W. F. Chen, D. J. Han, Plasticity for Structural Engineers, Taipei, Gau Lih,1995.
[22]D. C. Montgomery, Design and analysis of experiments, New York, Willy, 1976.
[23]R. K. Roy, A primer on the Taguchi Method, New York, Van Nostrand Reinhold, 1990.
[24]Garrou, Philip(2000), Wafer Level Scale Packaging (WL-CSP):An Overview, Transactions of the IEEE, Advanced Packaging, 23(2):198-205.
[25]J. H. Lau(2002), Critical Issues of Wafer Level Chip Scale Package(WLCSP) With Emphasis on Cost Analysis and Solder Joint Reliability, 25(1):42-50.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊