跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭凱元
研究生(外文):Kai-Yuan Cheng
論文名稱:迴圈式聚合酶鏈鎖反應微晶片之設計
論文名稱(外文):Design of loop type polymerase chain reaction micro chip
指導教授:張耀仁張耀仁引用關係
指導教授(外文):Yaw-Jen Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:73
中文關鍵詞:生物晶片迴圈式微流體聚合酶鏈鎖反應計算流體力學
外文關鍵詞:BiochipPCRCFDLoop typeMicrofluid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
聚合酶鏈鎖反應(PCR)微晶片在DNA複製上是一個重要的技術,一般所知有微腔室(micro-chamber)PCR晶片以及連續流(continuous flow)PCR晶片兩種,前者可任意決定PCR反應循環次數,後者可固定溫度區塊提供精準PCR反應溫度需求,為結合兩種晶片之優點,本文提供一種創新的微流體PCR晶片,晶片上包含迴圈式微流道、驅動微流道及進/出氣孔,進/出氣孔與外接氣體伺服驅動系統連接,利用氣體進/出氣方式驅動並控制微流道內檢體,使檢體於微流道迴圈內做連續繞圈運動,別於傳統氣體驅動微流體系統僅單方向前進後退。迴圈式微流道一圈分為三個區段,各區段加熱至一不同的溫度,以提供PCR反應所需之三種溫度,如此每繞一圈,即完成一個循環的PCR反應,只要控制其繞圈次數便可控制反應次數,配合即時檢測系統,可在DNA複製效率衰減前即時檢體輸出。在本文中主要描述此PCR晶片內之微流體驅動原理。
Polymerase chain reaction micro fluid chip is a very important technique on DNA replication. There are two kinds of PCR micro chip that are commonly known to the public: micro chamber and continuous flow. Former can decides PCR’s number of reaction cycles while the latter can stabilizes temperature zone which provides accurate PCR’s demand in temperature demand. To combine the advantages that these two PCR have, this paper provides and innovated, brand-new PCR micro fluid chip. On this chip, it contains micro loop-channel, external servo-system, and in/out ventilation holes. The ventilation holes are connected to external air servo-system. Using driving air to initiate and control inside loop-channel’s reagents٫ It allows the reagents to do continuous circular motion within micro loop channel, which differs from the traditional pneumatic micro fluid system that the reagents move only back and forth in a single direction. A loop of micro loop-channel is divided into three sectors, each sector heating up to different temperature to provide three different temperature for PCR’s reaction. So therefore with a loop will complete a cycle of PCR reaction, controlling the number of loops means to control the number of reactions. In Cooperation with real time detection system, we can stop the reaction before degrading of DNA’s amplification efficiency. This paper mainly describes the operation principle of PCR micro chip.
目錄
摘要...................................................................I
ABSTRACT..............................................................II
誌謝.................................................................III
目錄..................................................................IV
表目錄...............................................................VII
圖目錄..............................................................VIII
第一章 序論.........................................................1
1.1 前言...............................................................1
1.2 研究目的...........................................................2
1.3 文獻探討...........................................................3
1.3.1聚合酶鏈鎖反應微晶片..............................................3
1.3.2微流體驅動裝置....................................................7
1.4 論文架構...........................................................8
第二章 晶片設計與工作原理..........................................10
2.1 全系統架構........................................................10
2.2 晶片設計..........................................................11
2.3 工作原理..........................................................13
第三章 理論基礎....................................................15
3.1 PCR原理...........................................................15
3.2 流體力學分析......................................................18
3.2.1 流體運動統御方程式..............................................18
3.2.2 自由表面........................................................19
3.2.3 表面張力........................................................20
3.3 熱傳導分析........................................................21
第四章 數值模擬與結果討論..........................................22
4.1 模擬步驟..........................................................22
4.2 檢體驅動模擬......................................................24
4.2.1 建立模型與參數設定..............................................24
4.2.2 多種驅動角度結果分析............................................32
4.2.3 交接處流場分析..................................................42
4.2.4 不同驅動氣體流速結果比較........................................43
4.3 檢體停止模擬......................................................45
4.4 驅動氣體流量控制模擬..............................................47
4.5 晶片熱傳模擬......................................................49
第五章 結論與未來展望..............................................55
5.1 結論..............................................................55
5.2 未來展望..........................................................56
參考文獻..............................................................57

表目錄
表4-1:流體之物理屬性.................................................24
表4-2:檢體驅動模擬參數設定...........................................31
表4-3:各驅動角驅動結果比較...........................................40
表4-4:驅動時間表.....................................................44
表4-5:檢體停止模擬參數設定...........................................45
表4-6:驅動氣體流量控制模擬參數設定...................................47
表4-7:晶片熱傳模擬參數設定...........................................50
表4-8:300 μm玻璃結合晶片溫度數據分析.................................54
表4-9:500 μm玻璃結合晶片溫度數據分析.................................54

圖目錄
圖1-1:微流體元件發展流程圖............................................8
圖2-1:控制系統示意圖.................................................10
圖2-2:晶片平面結構圖.................................................12
圖2-3:晶片立體結構圖.................................................12
圖2-4:氣體微量驅入結構設計示意圖.....................................13
圖2-5:檢體驅動操作步驟圖.............................................14
圖3-1:PCR基本步驟流程圖..............................................16
圖3-2:三溫循環圖.....................................................17
圖4-1:CFD-ACE+處理流程圖.............................................22
圖4-2:驅入角θ = 0°網格外觀模型.......................................25
圖4-3:驅入角θ = 7.5°網格外觀模型.....................................25
圖4-4:驅入角θ = 15°網格外觀模型......................................25
圖4-5:驅入角θ = 22.5°網格外觀模型....................................26
圖4-6:驅入角θ = 30°網格外觀模型......................................26
圖4-7:驅入角θ = 37.5°網格外觀模型....................................26
圖4-8:驅入角θ = 45°網格外觀模型......................................26
圖4-9:Fluid2體積與Fluid1體積交界部份網格圖...........................27
圖4-10:連接處驅入角θ = 0°之網格......................................27
圖4-11:連接處驅入角θ = 7.5°之網格....................................28
圖4-12:連接處驅入角θ = 15°之網格.....................................28
圖4-13:連接處驅入角θ = 22.5°之網格...................................29
圖4-14:連接處驅入角θ = 30°之網格.....................................29
圖4-15:連接處驅入角θ = 37.5°之網格...................................30
圖4-16:連接處驅入角θ = 45°之網格.....................................30
圖4-17:CFD-ACE-GUI下參數設定圖.......................................32
圖4-18:θ = 0°檢體驅動模擬圖..........................................33
圖4-19:θ = 7.5°檢體驅動模擬圖........................................34
圖4-20:θ = 15°檢體驅動模擬圖.........................................35
圖4-21:θ = 22.5°檢體驅動模擬圖.......................................36
圖4-22:θ = 30°檢體驅動模擬圖.........................................37
圖4-23:θ = 37.5°檢體驅動模擬圖.......................................38
圖4-24:θ = 45°檢體驅動模擬圖.........................................39
圖4-25:全程驅動時間統計圖............................................41
圖4-26:全程驅動速率統計圖............................................41
圖4-27:θ = 0°檢體流經驅動流道與迴圈流道交接處流場圖..................43
圖4-28:θ = 45°檢體流經驅動流道與迴圈流道交接處流場圖.................43
圖4-29:驅動時間曲線圖................................................44
圖4-30:檢體停止模擬結果..............................................46
圖4-31:驅動氣體微量控制結構模擬圖....................................48
圖4-32:驅動氣體流速控制數據圖........................................48
圖4-33:晶片加熱面與迴圈流道內反應區關係圖............................50
圖4-34:兩片500 μm玻璃晶片結合之熱傳導模擬結果圖......................51
圖4-35:兩片300 μm玻璃晶片結合之熱傳導模擬結果圖......................52
圖4-36:300 μm玻璃晶片結合溫度統計圖..................................52
圖4-37:500 μm玻璃晶片結合溫度統計圖..................................53
參考文獻
[1] Poser, S., Schulz, T., Dillner, U., Baier, V., Köhler, J. M., Schimkat, D., Mayer, G.., and Siebert, A., “Chip elements for fast thermocycling”, Sensors and Actuators. A62, 672 (1997).
[2] Daniel, J. H., “Silicon micro-chambers for DNA amplification”, Sensors and Actuators. A71, 81 (1998).
[3] Giordano, B. C., Ferrance, J., Swedberg, S., Huhmer, A. F. R., and Landers, J. P., “Polymerase Chain Reaction in Polymeric Microchips: DNA Amplification in Less Than 240 Seconds”, Anal Biochemistry. 291, 124 (2001).
[4] Schneegaß, I., and Köhler, J. M., "Flow-through polymerase chain reactions in chip thermocyclers", Molecular Biotechnology. 82, 101 (2001).
[5] Kopp, M. U., Mello, A. J., and Manz, A., “Chemical Amplification: Continuous-Flow PCR on a Chip”, Science. 280, 1046 (1998).
[6] Schneegaß, I., Bräutigam, R., and Köhler, J. M., ”Miniaturized flow-through PCR with different template types in a silicon chip thermocycler”, Lab on a Chip. 1, 41 (2001).
[7] Obeid, P. J., and Christopoulos, T. K., "Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection", Analytica Chimica Acta. 494, 1 (2003).
[8] Fukuba, T., Yamamoto, T., Naganuma, T., and Fujii, T., “Microfabricated flow-through device for DNA amplification ─ towards in situ gene analysis”, Chemical Engineering Journal. 101, 151 (2004).
[9] Zengerle, R., Ulrich, J., Kluge, S., Richter, M., and Richter, A., “A bidirectional silicon micropump”, Sensors and Actuator. A50, 81 (1995).
[10] Hartley, F. T., “Micromachined peristaltic pump”, U.S. Patent No. 5705018 (1998).
[11] Dewa, A. S., and Sevrain, C. J. P., “Microfabricated fluidic devices”, U.S. Patent No. 5788468 (1998).
[12] Olssen, A., Stemme, G., and Stemme, E., “A valve-less planar fluid pump with two pump chambers”, Sensors and Actuator A47, 549 (1995).
[13] Jen, C. P., and Lin, Y. C., “Design and simulation of bi-directional microfluid driving systemd”, J. Micromech. Microeng. 12, 115 (2002).
[14] 姚南光, 萬裕民, 陳啟楨, 洪隆裕, 王獻煌, 張四維, “微流體驅動方法及裝置”, 中華民國專利公告號 528836 (2003).
[15] Kothe, D. B., Rider, W. J., Mosso, S. J., and Brock, J. S., ”Volume tracking of interfaces having surface tension in two and three dimensions”, AIAA. 96, 859 (1997).
[16] Zhang, Q., Wang, W., Zhang, H., Wang, Y., “Temerature analysis of contunous-flow micro-PCR based on FEA”, Sensors and Actuator. B82, 75 (2002).
[17] “CFD-ACE(U) Modules”, CFD-RC (2003).
[18] “CFD-ACE(U) User Manual”, CFD-RC (2003)
[19] Geschke, O., Klank, H., and Telleman, P., “Microsystem Engineering of Lab-on-a-chip Devices”, WILEY-VCH Verlag GmbH & Co. KGaA (2004).
[20] Hsu, T. R., “MEMS & Microsystems Design and Manufacture”, McGraw-Hill Higher Education (2002).
[21] 馬立人, 蔣中華, ”生物晶片(第二版)”, 九州圖書文物有限公司, (2003).
[22] http://www.cgmh.com.tw/intr/intr2/c3100/pub/10info.htm.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊