(3.236.214.19) 您好!臺灣時間:2021/05/06 20:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李宙耕
研究生(外文):Chou-Ken Lee
論文名稱:活性污泥生成溶解性微生物產物特性之研究
論文名稱(外文):Characteristics of Soluble Microbial Products in Activated Sludge
指導教授:莊順興莊順興引用關係
指導教授(外文):Shun-Hsing Chuang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:166
中文關鍵詞:積垢連續批式活性污泥法揮發性有機酸分子量分佈生物質量分解相關產物基質利用相關產物溶解性微生物產物
外文關鍵詞:Soluble microbial productsVolatile fatty acidsBiomass associated productsUtilization associated productsMolecular weight distributionFoulingSequencing batch reactor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:334
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
生物處理程序主要是利用反應槽中各不同微生物的代謝特性,藉微生物的反應以分解、去除污水中的有機物質及營養鹽類,在生物處理上經常殘餘一部份的溶解性有機物於水中而無法去除。廢水處理後之出流水中之可溶解的有機碳中包括了來自微生物所產生的可溶解有機化合物,通常被稱之為溶解性微生物產物(Soluble microbial products, SMPs),此溶解性微生物產物的性質與濃度受微生物的種類、生長環境、基質利用速度、溫度、pH、ORP等因素而影響,SMPs的存在是非常值得注意的物質,其原因是其不但與達到現行的排放標準有關,且與有效降低放流水濃度,及探討生物處理之限值等也有著重要的關聯,更是考慮水回收再利用時,減低薄膜積垢(Fouling)所需考慮之因子。
本研究之植種污泥來自朝陽科技大學污水處理場污泥濃縮池,利用連續批式活性污泥法(Sequencing batch reactor, SBR)控制於SRT為10天之條件下馴養完成後,以葡萄糖為基質分別於好氧、缺氧及厭氧不同環境下,進行持續負荷及內呼吸條件之批次實驗,藉以探討活性污泥在不同操作環境下SMPs之生成特性及其分子大小分佈之特性。
研究結果顯示基質利用相關產物(Utilization associated products, UAP)之SMPs在好氧初期反應後,其濃度較缺氧及厭氧環境下來得低,約為4.2 mg DOC/g SS,但在反應12小時後,其量達至最高為29.2 mg DOC/g SS,後又隨時間的增加,產量逐漸降至最低為12 mg DOC/g SS,顯然在好氧環境下生物是需長時間的適應來降解其SMPs之產量;缺氧環境中SMPs初期的產量與厭氧環境下較相似,但反應2小時後,缺氧之SMPs產量變異不大,其趨勢較平緩,經24小時反應後,其濃度也逐漸下降至15.3 mg DOC/g SS;厭氧環境中SMPs產量在反應4小時至6小時間,生成SMPs之產量達到最高,在反應6小時過後,其量有明顯下降之變化,最終下降至14.5 mg DOC/g SS,表示SMPs產生的時間較快其含量也隨之較大,但被生物降解的速度也相較來得快。
在生物質量分解相關產物(Biomass associated products, BAP)方面,由於未有揮發性有機酸(Volatile fatty acids, VFAs)之累積,所以SMPs之產生主要為水中DOC。好氧環境下SMPs的生成特性有逐漸上升而後平緩之趨勢,其值從1.4 mg DOC/g SS上升至7.6 mg DOC/g SS。
不同環境下UAP之分子量分佈(Molecular weight distribution, MWD)之變化,實驗初期時皆以大分子居多(大於100 kDa),但隨時間的增加,自有機性基質分解後,衍生出主要為較小的含碳有機化合物(小於30 kDa)。而在不同環境下BAP分子量分佈之變化,實驗初期皆是小分子居多,由於微生物在沒有餵食基質狀態下,部分微生物將因老化而分解,部分成分將被微生物耗用,而未耗用的部份,以較高的分子量分佈之成分為主。
Biological wastewater treatment processes employed various microorganisms with their metabolism to reduce and degrade the organic substances and nutrients in wastewater. Some persistent chemical compounds could be processed by cometabolism. It is quite difficult to remove the residual COD in the effluent which included soluble microbial products (SMPs). The productions and characteristics of the SMPs were functions of the microbial species, growth environment, rate of substrate utilization, temperature, pH and oxidation/reduction potential, etc. The substances of SMPs were essential not only for meeting the standard of effluent but also for reducing the organics concentration to improve recycle potential of wastewater.
In this study, seeding microorganisms were derived from the sludge of wastewater treatment in the Chaoyang University of Technology. This sludge was acclimated in a sequencing batch reactor which was operated at SRT of 10 days. Acclimated sludge was collected for aerobic, anoxic and anaerobic batch experiments with continued load and endogenous respiration to investigate the characteristics of SMPs production in activated sludge.
Experimental results demonstrated that the amount of utilization associated products (UAP) in aerobic situation were about 4.2 mg DOC/g SS which was lower than the amount in the anoxic or anaerobic situation. After 12 hours, the amount of UAP was increased to 29.2 mg DOC/g SS. As time goes by, the amount was decrease to 12 mg DOC/g SS. Apparently, the organism needed long time for SMPs degradation in aerobic environment. In anoxic environment, the production of SMPs was similar with anaerobic environment, but after 2 hours, the variation of SMPs in anoxic environment was slight. After 24 hours reaction, the amount was decrease to 15.3 mg DOC/g SS. In anaerobic condition, the amount of SMPs was uppermost during 4-6 hour reaction, then, it was decrease to 14.5 mg DOC/g SS. It showed that the production of SMPs was quick; moreover, the rate of biodegradation was also quick.
In the biomass associated products (BAP), the production of SMPs was represented as DOC. The production of SMPs in aerobic environment was increased initially and then reached to a stable value. The amount was increased from 1.4 mg DOC/g SS to 7.6 mg DOC/g SS. Comparing with anoxic and anaerobic environment, the behavior of SMPs production was different.
The molecular weight of major UAP in the initial stage was higher than 100 kDa. Then, the organic substances were decomposed; the compounds of molecular weight lower than 30 kDa was formed. The changes of molecular weight distribution of BAP under different environments showed that more quantity of compounds with lower molecular was present at the initial stage. Due to without feeding of substances for microorganism, some microorganisms were decomposed because of endogenous respiration decade, and some released compounds were consumed by the other microorganisms. The residual was mainly composed of high molecular weight compounds.
總目錄
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII

目錄
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 2
第二章 文獻回顧 3
2.1 溶解性微生物之定義與發展 3
2.1.1 SMPs之定義 5
2.1.2 SMPs與胞外聚合物 11
2.1.3 SMPs分子量分佈 13
2.2 溶解性微生物產物生成特性 19
2.2.1 好氧相生化反應機制 21
2.2.2 厭氧相生化反應機制 33
2.2.3 缺氧相生化反應機制 41
2.3 連續批式活性污泥法 44
2.3.1 SBR之原理 45
2.3.2 SBR之優點 48
2.3.3 SBR之操作策略 50
第三章 研究方法與設備 52
3.1 研究方法 52
3.1.1 研究架構 53
3.1.2 實驗配置與設計 54
3.2 實驗設備 59
3.2.1 SBR模型廠 59
3.2.2 批次實驗裝置 60
3.2.3 實驗基質 64
3.3 分析方法及設備 67
第四章 結果與討論 71
4.1 SBR反應槽操作參數特性之分析 72
4.1.1 pH之變化特性 72
4.1.2 ORP之變化特性 75
4.1.3 DO之變化特性 78
4.1.4 COD之變化特性 81
4.1.5 MLSS之變化特性 82
4.1.6 SMPs之變化特性 84
4.2 好氧環境溶解性微生物產物生成特性 85
4.2.1 DO之變化特性 85
4.2.2 溶解性有機物之變化特性 87
4.2.3 VFAs之變化特性 93
4.2.4 SMPs之變化特性 96
4.2.5 SMPs分子量分佈之變化特性 99
4.2.6 好氧環境溶解性微生物產物生成特性小結 101
4.3 缺氧環境溶解性微生物產物生成特性 102
4.3.1 ORP之變化特性 102
4.3.2 溶解性有機物之變化特性 104
4.3.3 VFAs之變化特性 109
4.3.4 SMPs之變化特性 112
4.3.5 SMPs分子量分佈之變化特性 115
4.3.6 缺氧環境溶解性微生物產物生成特性小結 117
4.4 厭氧環境溶解性微生物產物生成特性 118
4.4.1 ORP之變化特性 118
4.4.2 溶解性有機物之變化特性 120
4.4.3 VFAs之變化特性 125
4.4.4 SMPs之變化特性 128
4.4.5 SMPs分子量分佈之變化特性 131
4.4.6 厭氧環境溶解性微生物產物生成特性小結 133
4.5 不同環境下溶解性微生物產物生成特性之比較分析 134
第五章 結論與建議 139
5.1 結論 139
5.2 建議 141
參考文獻 142
附錄 155
附錄A:葡萄糖濃度分析測定 155
附錄B:揮發酸濃度分析方法 158
參考文獻

Amann R. I., “Fluorescently labeled, rRNA-targeted digonucleotide probes in the study of microbial ecology,” Mol. Ecol., Vol. 4, pp. 543-554(1995).

Arora, M. L., Barth E. F., and Umphres M. B., “Technology Evaluation of Sequencing Batch Reactor,” WPCF, Vol. 57, No. 8, pp. 867-875(1985).

Baker D. J., and Stuckey D. C., “A review of soluble microbial product (SMPs) in wastewater treatment systems,” Wat. Res., Vol. 33, No. 14, pp. 3063-3082(1999).

Barker D. J., Mannucchi G. A., Salvi S. M. L., and Stuckey D. C., “Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents,” Wat. Res., in press, (1999).

Bender M. E., Matson W. R., and Jordan R. A., “On the significance of metal complexing agents in secondary sewage effluents,” Environ. Sci. Technol., Vol. 4, No. 6, pp. 520-521(1970).

Boero V. J., Eckenfelder Jr. W. W., and Bowers A. R., “Soluble microbial product formation in biological systems,” Wat. Sci. Technol., Vol. 23, pp. 1067-1076(1991).

Boero V. J., Eckenfelder Jr. W. W., and Bowers A. R., “Molecular weight distribution of soluble microbial products in biological systems,” Wat. Sci. Technol., Vol. 34, No. 5-6, pp. 241-248(1996).

Boylen C. W., and Ensign J. C., “Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of arthrobacter crustallopoietes,” J. Bact., Vol. 103, pp. 578-587(1970).

Bunch R. L., Barth E. F., and Ettinger M. B., “Organic materials in secondary effluents,” J. WPCF, Vol. 33, No. 2, pp. 122-126(1961).

Burleigh I. G., and Dawes E. A., “Studies on the endogenous metabolism and senescence of starved sarcin lutea,” Biochem. J., Vol. 102, pp. 236-250(1967).

Christensen H. N., “Biological Transport,” 2nd ed. W.A. Benjamin, Reading, MA(1975).

Chudoba J., “Inhibitory effect of refractory organic compounds produced by activated sludge microorganisms on microbial activity and flocculation,” Wat. Res., Vol. 19, No. 2, pp. 197-200(1985a).

Chudoba J., “Quantitative estimation in COD units of refractory organic compounds produced by activated sludge microorganisms,” Wat. Res., Vol. 19, No. 1, pp. 37-43(1985b).

Confer D. R., and Logan B. E., “Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I,” Bovine serum albumin. Wat. Res., Vol. 31, No. 9, pp. 2127-2136(1997a).

Confer D. R., and Logan B. E., “Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures II,” Dextran and dextrin. Wat. Res., Vol. 31, No. 9, pp. 2137-2145(1997b).

Confer D. R., and Logan B. E., “A conceptual model describing macromolecule degradation by suspended cultures and biofilms,” Wat. Sci. Technol., Vol. 37, No. 4-5, pp. 231-234(1998).

Dawes E. A., and Ribbins D. W., “Some aspects of the endogenous metabolism of bacteria,” Bact. Rev., Vol. 28, pp. 126-149(1964).

Demain A. L., Burg R. W., and Hendlin D., “Excretion and degradation of ribonucleic acids by Bacillus subtilis,” J. Bact., Vol. 89, pp. 640-646(1965).

DeWalle F. B., and Chian E. S. K., “Removal of organic matter by activated carbon columns,” J. Environ. Eng. Div., ASCE Vol. 100, No. EE5, pp. 1089-1104(1974b).

Eckenfelder Jr. W. W., “Point toxics control for industrial wastewaters,” Civil Eng. Pract., pp. 98-112(1988).

Emery T., “Iron metabolism in humans and plants,” Am. Sci., Vol. 70, pp. 626-632(1982).

Epstein E., “The Science of Composting,” Technomic Publishing Company, Pennsylvania, pp. 32-39(1997).

Franta J., Helmreich B., Pribyl M., Adamietz E., and Wilderer P. A., “Advanced biological treatment of papermill wastewaters; effects of operation conditions on COD removal and production of soluble organiccompounds in activated sludge systems,” Wat. Sci. Technol., Vol. 30, No. 3, pp. 199-207(1994).

Germirli F., Orhon D., Artan N., Ubay E., and Gőrgűn E., “Effect of two-stage treatment on the biological treatability of strong industrial wastes,” Wat. Sci. Technol., Vol. 28, No. 2, pp. 145-154(1993).

Grady Jr. C. P. L., Kirsch E. J., Koczwara M. K., Trgovcich B., and Watt R. D., “Molecular weight distributions in activated sludge effluents,” Wat. Res., Vol. 18, No. 2, pp. 239-246(1984).

Hang-Sik Shin., and Seok-Tae Kang., “Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times,” Wat. Res., Vol. 37, pp. 121-127(2003).

Hao O. J., and Huang J., “Alternating aerobic-anoxic process for nitrogen removal:Process evaluation,” Wat. Environ. Res., Vol. 68, No.1, pp. 83-93(1996).

Harold F. M., “Conservation and transformation of energy by bacterial membranes,” Bact. Rev., Vol. 36, pp. 172-230(1972).

Heinrich D., “Wastewater treatment in a compahy with advanced demands for water quality,” Wat. Sci. Tech., Vol. 32, pp. 143-150(1995).

Heppel L., “Selective release of enzymes from bacteria,” Science, Vol. 156, pp. 1451-1455(1967).

Herbert H., “The chemical composition of microorganisms as a function of their environment,” Symp. Soc. Gen. Microbiol., Vol. 11, pp. 391-416(1961).

Hoepker E. C., and Schroeder E. D., “The Effect of Loading Rate on Batch Activated Sludge Effluent Quality,” Journal of the Water Pollution Control Federation, Vol. 51, No. 2, pp. 264-273(1997).

Hoyos S. E. G., Juárez J. V., Ramonet C. A., Lόpez J. G., Rios A. A., Uribe E. G., “Aerobic Thermophilic Composting of Waste Sludge from Gelatin-Grenetine Industry,” Conservation and Recycling, Vol. 34, pp. 161-173(2002).

Hutner S. H., “Inorganic nutrition,” Ann. Rev. Microbiol., Vol. 26, pp. 313-346(1972).

Irvine R. L., and Busch A. W., “Sequencing Batch Biological Reactor-an Overview,” Feature, pp. 235-243(1979).

Irvine R. L., and Ketchum L. H., “An Organic Loading Study of Full-Scale Sequencing Batch Reactor,” WPCF, Vol. 57, No. 8, pp. 847-853(1985).

Itävaara, M., Venelampi, O., Karjomaa, S., “Testing methods for determining the compostability of packaging materials,” In: Barth, J. (Ed.), Proceedings of Biological Waste Management “Wasted Chance”. BWM Infoservice, Germany(1995).

Jia X. S., “Extracellular polymers of hydrogen-utilizing methanogenic and slulfate-reducing sludges,” Wat. Res., Vol. 30, pp. 1439-1444 (1996).

Karapanagiotis N. K., “Extraction and characterization of extracellular polymers in digested sewage sludge,” J. Chem. Tech., Biotechnol, Vol. 44, pp. 107-120(1993).

Ketchum L. H., Irvine R. L., and Ping-Chau Liao., “First Cost Analysis of Sequencing Batch Reactor,” J. W. P. C. F., Vol. 51, No. 2, pp. 288-297(1979).

Kim B. R., Snoeyink V. L., and Saunders F. M., “Influence of MCRT on adsorption,” J. Environ. Eng. Div., ASCE Vol. 102, No. EE1, pp. 55-70(1976b).

Kuo W. C., “Production of soluble microbial chelators and their impact on anaerobic treatment,” Ph.D. thesis, University of Iowa, Iowa City(1993).

Kuo W. C., and Parkin G. F., “Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties,” Wat. Res., Vol. 30, No. 4, pp. 915-922(1996).

Kuo W. C., Sneve M. A., and Parkin G. F., “Formation of soluble microbial products during anaerobic treatment,” Wat. Environ. Res., Vol. 68, pp. 279-285(1996).

Levins P. L., “Characterization and separation of secondary effluent compounds by molecular weight,” A.D. Little, E.P.A. Project 16020 FEN 03/71(1971).

Logan B. E., and Jiang Q., “Molecular size distributions of dissolved organic matter,” J. Environ. Eng. Div., ASCE Vol. 116, No. 6, pp. 1046-1062(1990).

Lsapidou C. S., and Rittmann B. E., “A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass,” Wat. Res., Vol. 36, pp. 2711-2720(2002).

Lu S. G., Imai T., Ukita M., Sekine M., Higuchi T., and Fukagawa M., “A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products,” Wat. Res., Vol. 35, No. 8, pp. 2038–2048(2001).

Manka J., Rebhun M., Mandelbaum A., and Bortinger A., “Characterization of organics in secondary effluents,” Environ. Sci. Technol., Vol. 8, No. 12, pp. 1017-1020(1974).

Mateles R. I., and Chian S. K., “Kinetics of substrate uptake in pure and mixed cultures,” Environ. Sci. Technol., Vol. 3, pp. 569-574(1969).

McGregor W. C., and Finn R. K., “Factors affecting the flocculation of bacteria by chemical additives,” Biotech. Bioeng., Vol. 11, pp. 127-138(1969).
Morel F. M. M., “Principles of Aquatic Chemistry,” John Wiley Interscience, New York(1983).

Morgan J. W., “A comparative study of the nature of biopolymers extracted from anaerobic and activated sludge,” Wat. Res., Vol. 24, pp. 743-750(1990).

Nachaiyasit S., and Stuckey D. C., “Effect of low temperatures on the performance of an anaerobic baffled reactor (ABR) ,” J. Chem. Tech. Biotech., Vol. 69, pp. 276-284(1997).

Namkung E., and Rittmann B. E., “Effects of SMP on biofilm-reactor performance,” J. Environ. Eng. Div., ASCE Vol. 114, No. 1, pp. 199-210(1988).

Namkung E., and Rittmann B. E., “Soluble microbial products (SMP) formation kinetics by biofilms,” Wat. Res., Vol. 20, No. 6, pp. 795-806(1986).

Neijssel O. M., and Tempest D. W., “The role of energy-spilling reactions in the growth of Klebsiella Aerogenes NCTC 418 in aerobic chemostat culture,” Arch. Microbiol., Vol. 110, pp. 305-311(1976).

Neilands J. B., “Hydroxamic acids in nature,” Science, Vol. 156, pp. 1443-1447(1967).

Noguera D. R., Araki N., and Rittmann B. E., “Soluble microbial products (SMP) in anaerobic chemostats,” Biotech. Bioeng., Vol. 44, pp. 1040-1047(1994).
Nossal N. G., and Heppel L. A., “The release of enzymes by osmotic shock from E. coli in exponential phase,” J. Biol. Chem., Vol. 241, No. 13, pp. 3055-3062(1966).

Painter H. A., “Organic compounds in solution in sewage effluents,” Chem. Ind., September, pp. 818-822(1973).

Pavoni J. L., Tenney M. W., and Echelberger Jr. W. F., “Bacterial exocellular polymers and biological flocculation,” J. WPCF, Vol. 44, pp. 414-431(1972).

Payne J. W., “Peptides and microorganisms,” Adv. Microb. Physiol., Vol. 13, pp. 55-113(1976).

Pirt S. J., “Principles of Microbe and Cell Cultivation,” Blackwell Scientific, Oxford(1975).

Postgate J. R., and Hunter J. R., “Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates,” J. Gen. Microbiol., Vol. 34, 459-473(1964).

Pribyl M., Tucek F., Wilderer P. A., and Wanner J., “Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors,” Wat. Sci. Technol., Vol. 35, No. 1, pp. 27-34(1997).

Rebhun M., and Manka J., “Classification of organics in secondary effluents,” Environ. Sci. Technol., Vol. 5, No. 7, pp. 606-609(1971).

Rittmann B. E., McCarty P. L., “Environmental Biotechnology: principles and applications,” New York, NY: McGraw Hill(2001).

Rogers D., “Osmotic pools in Escherichia coli,” Science, Vol. 159, pp. 531-532(1968).

Saier M. H., Feucht B. U., and McCaman M. T., “Regulation of intracellular adenosine cyclic 3'':5''-monophosphate levels in Escherichia coli and Salmonella typhimurium,” J. Biol. Chem., Vol. 250, No. 19, pp. 7593-7601(1975).

Saunders F. M., and Dick R. I., “Effect of mean-cell residence time on organic composition of activated sludge effluents,” J. WPCF, Vol. 53, No. 2, pp.201-215(1981).

Schiener P., Nachaiyasit S., and Stuckey D. C., “Production of soluble microbial products (SMP) in an anaerobic baffled reactor: composition, biodegradability and the effect of process parameters,” Environ. Technol., Vol. 19, pp. 391-400(1998).

Smeaton J. R., and Elliot W. H., “Selective release of ribonuclease inhibitor from B. subtilis cells by cold shock treatment,” Biochem. Biophys. Res. Commun., Vol. 26, No. 1, pp. 75-81(1967).

Strange R. E., and Dark F. A., “Substrate-accelerated death of Aerobacter aerogenes,” J. Gen. Microbiol., Vol. 39, pp. 215-228(1965).

Strange R. E., Wade H. E., and Ness A. G., “The catabolism of proteins and nucleic acids in starved Aerobacter aerogenes,” Biochem. J., Vol. 86, pp. 197-203(1963).

Thomas T. D., and Batt R. D., “Degradation of cell constituents by starved Streptococcus lactis in relation to survival,” J. Gen. Microbiol., Vol. 58, pp. 347-362(1969).

Thompson J., “Characteristics and energy requirements of an A-aminoisobutyric acid transport system in Streptococcus lactis,” J. Bact., Vol. 127, No. 2, pp. 719±730(1976).

Tuomela M., Vikman M., Hatakka A., Itavaara M., “Biodegradation of Lignin in a Compost Environment,” Bioresource Technology, Vol. 72, pp. 169-183(2000).

Urbain, V., Block, J. C., and Manem J., “Bioflocculation in activated sludge : An analytic approach,” Wat. Res., Vol. 27, NO. 5, pp. 829-838(1993).

Urbain V., Mobarry B., de Silva V., Stahl D. A., Rittmann B. E., and Manem J., “Integration of performance, molecular biology and modeling to describe the activated sludge process,” Wat. Sci. Technol., Vol. 37, 223-229(1998).

U. S. Environment Protection Agency, Nitrogen Control. Washington, D. C(1975).

Water Environment Federation, ISBN:1-57278-123-8. Biological and Chemical Systems for Nutrient Removal(1998).

Xia Huang., Rui Liu., Yi Qian., “Behaviour of soluble microbial products in a membrane bioreactor,” Process Biochemistry, Vol. 36, pp. 401-406(2000).

Yonghun Lee., Jinwoo Cho., Youngwoo Sea., Jae Woo Lee., Kyu-Hong Ahn., “Modeling of submerged membrane bioreactor process for wastewater treatment,” Desalination, Vol. 146, pp. 45l-457(2002).

Zuckerman M. M., and Molof A. H., “High quality reuse water by chemical-physical wastewater treatment,” J. WPCF, Vol. 42, No. 3, Part 1, pp. 437-456(1970).


















歐陽嶠暉,生物處理法新技術,經濟部工業污染防治中心印行,臺北(1994)。

歐陽嶠暉,下水道工程學,長松文化公司,臺北(2000)。

章裕民等,環境工程化學,文京圖書有限公司(1995)。

官路,「下水污泥堆肥化操作因子之研究」,碩士論文,國立中央大學土木工程學研究所,桃園(1990)。

許添財,「連續流回分式活性污泥系統好氧相曝氣控制策略之研究 : 線上即時量測溶氧轉換率與需氧量方法之建立」,碩士論文,國立中央大學環境工程研究所,桃園(2002)。

卓伯全,「連續流循序批分式活性污泥系統好氧相即時曝氣控制策略之發展:低溶氧生物脫氮除磷程序控制技術之研究」,博士論文,國立中央大學環境工程研究所,桃園(2003)。

李伯亨,「下水污泥堆肥程序質能平衡之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2003)。

蔡人傑,「蔬菜廢棄物好氧生物降解(堆肥化)」,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄(2003)。

楊立豪,「以改良式SBR 程序進行含糖廢水醱酵產氫之饋料進流策略最佳化探討」,碩士論文,逢甲大學化學工程研究所,臺中(2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔