|
[1] D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning. Reading, MA: Addison-Wesley, 1989. [2] J. K. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press, 1992. [3] L. J. Fogel, “Evolutionary programming in perspective: The top-down view,” in Computational Intelligence: Imitating Life, J. M. Zurada, R. J. Marks II, and C. Goldberg, Eds. Piscataway, NJ: IEEE Press, 1994. [4] I. Rechenberg, “Evolution strategy,” in Computational Intelligence: Imitating Life, J. M. Zurada, R. J. Marks II, and C. Goldberg, Eds. Piscataway, NJ: IEEE Press, 1994. [5] C. L. Karr, “Design of an adaptive fuzzy logic controller using a genetic algorithm,” in Proc. 4th Conf. Genetic Algorithms, pp. 450-457, 1991. [6] A. Homaifar and E. McCormick, “Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 3, no. 9, pp. 129-139, May 1995. [7] M. A. Lee and H. Takagi, “Integrating design stages of fuzzy systems using genetic algorithms,” in Proc. IEEE Int. Conf. Fuzzy Syst., New York, vol. 1, pp. 612-617, Apr. 1993. [8] C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms,” IEEE Trans. Fuzzy Systs., vol. 10, no. 2, pp. 155-170, Apr. 2002. [9] C. F. Juang, J. Y. Lin and C. T. Lin, “Genetic reinforcement learning through symbiotic evolution for fuzzy controller design,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 30, no. 2, pp. 290-302, Apr. 2000. [10] C. T. Lin and C. P. Jou, “GA-based fuzzy reinforcement learning for control of a magnetic bearing system,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 30, no. 2, pp. 276-289, Apr. 2000. [11] P. Kumar, V.K. Chandna, Thomas, “Fuzzy-genetic algorithm for pre-processing data at the RTU,” IEEE Trans. Power Systems, vol. 19, no. 2, pp. 718-723, May. 2004. [12] W. Y. Wan and Y. H. Li, “Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 33, no. 6, pp. 966–976, Dec. 2003. [13] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System, NJ:Prentice-Hall, 1996. [14] G. G. Towell and J. W. Shavlik, “Extracting refined rules from knowledge-based neural networks,” Machine Learning, vol. 13, pp. 71-101, 1993. [15] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control network,” IEEE Trans. Fuzzy systs., vol. 5, no. 4, pp. 477-496, Nov. 1997. [16]L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1414-1427, Nov/Dec. 1992. [17]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116-132, 1985. [18]J.-S. R. Jang, ”ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. on Syst., Man, and Cybern., vol. 23, pp. 665-685, 1993. [19]C. F. Juang and C. T. Lin, “An self-constructing self-constructing neural fuzzy inference network and its applications,” IEEE Trans. Fuzzy Systs., vol. 6, no.1, pp. 12-31, Feb. 1998. [20] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Trans. Fuzzy Systs., vol. 9, no. 5, pp. 751-759, Oct. 2001. [21] H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, “Neural networks designed on approximate reasoning architecture and their application,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 752-759, 1992. [22] K.J. °Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1989. [23] J. Hauser, S. Sastry, and P. Kokotovic, “Nonolinear control via approximate input-output linearization: the ball and beam example,” IEEE Trans. Automatic Control, vol. 37, pp. 392-398, Mar. 1992. [24] E. Mizutani and J.-S. R. Jang, “Coactive neural fuzzy modeling,” Proc. Int. Conf. Neural Networks, pp. 760-765, 1995. [25] C. J. Lin and C. C. Chin, “A wavelet-based neuro-fuzzy system and its applications,” Proc. IEEE Int. Conf. Neural Networks, pp. 1921-1926, Oregon, July 20-24, 2003. [26] K. S. Narendra and K. Parthasarathy, ”Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27, 1990. [27] J. Zhang and A. J. Morris, “Recurrent neuro-fuzzy networks for nonlinear process modeling,” IEEE Trans. Neural Networks, vol. 10, no. 2, pp.313-326, 1999. [28] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy inference network,” IEEE Trans. Neural Networks, vol. 10, no. 4, pp.828-845, July 1999.
[29] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Systs., vol. 8, no. 4, pp. 349-366, Aug. 2000. [30] P. A. Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for dynamic system identification,” IEEE Trans. Syst., Man, Cybern., vol. 32, no. 2, pp. 176-190, Apr. 2002. [31] S. F. Su and F. Y. Yang, "On the dynamical modeling with neural fuzzy networks," IEEE Trans. Neural Networks, vol. 13, no. 6, pp. 1548-1553, Nov. 2002. [32] G. Mouzouris and J. M. Mendel, “Dynamic non-singleton fuzzy logic systems for nonlinear modeling,” IEEE Trans. Fuzzy Systs., vol.5, pp. 199-208, 1997. [33] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE Trans. Neural Networks, Vol. 3, No. 6, Nov. 1992, pp. 889–898. [34] Y. C. Pati and P. S. Krishnaprasad, “Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations,” IEEE Trans. on Neural Networks, Vol. 4, No. 2, 1993, pp. 73-85.
[35] H. H. Szu and S. Kadambe, “Neural network adaptive wavelets for signal representation and classification,” Optical Engineering, Vol. 31, No. 9, 1992, pp. 1907-1916. [36] T. Yamakawa, E. Uchino and T. Samatsu, “Wavelet neural networks employing over-complete number of compactly supported non-orthogonal wavelets and their applications,” Proc. of IEEE Conf. on Neural Networks, Vol. 3, 1994, pp. 1391 –1396. [37] J. Chen and D. D. Bruns, “WaveARX neural network development for system identification using a systematic design synthesis,” Ind. Eng. Chem. Res., Vol. 34, 1995, pp. 4420–4435. [38] I. Daubechies, ”Orthonormal Bases of Compactly Supported Wavelets,” Comm. Pur. Appl. Math., Vol. 41, 1998. [39] Ho D.W.C., P. A. Zhang and J. Xu, “Fuzzy Wavelet Networks for Function Learning,” IEEE Trans. on Fuzzy Systems, Vol. 9, No. 1, 2001, pp. 200 –211. [40]T. Bäck and H. P. Schwefel, “An overview of evolutionary algorithms for parameter optimization,” Evolutionary Comput., vol. 1, no. 1, pp. 1–23, 1993. [41]D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway, NJ: IEEE Press, 1995. [42]X. Yao, Ed., Evolutionary Computation: Theory and Applications, Singapore: World Scientific, 1999. [43] R. E. Smith, S. Forrest, and A. S. Perelson, “Searching for diverse, cooperative populations with genetic algorithms,” Evol. Comput., vol. 1, no. 2, pp. 127–149, 1993. [44] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through symbiotic evolution,” Mach. Learn., vol. 22, pp. 11–32, 1996. [45] J.-S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Ch. 17, Prentice-Hall, 1997. [46] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases. Advances in Fuzzy Systems-Applications and Theory, vol.19, NJ: World Scientific Publishing, 2001 [47] J. Tanomaru and S. Omatu, “Process control by self-constructing trained neural controllers,” IEEE Trans. on Ind. Electron., Vol. 39, pp. 511-521, 1992.
[48] R. J. Williams and D. Zipser, “A learning algorithm for continually running recurrent neural networks,” Neural Comput., vol. 1, no. 2, pp. 270–280, 1989. [49] J. L. Elman, “Finding structure in time,” Cognit. Sci., Vol. 14, pp. 179–211, 1990. [50] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neural networks for identification and control of dynamic systems,” IEEE Trans. Neural Networks, vol. 5, pp. 306–319, Apr. 1994. [51] Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs. New York: Springer-Verlag, 1999. [52] J. Arabas, Z. Michalewicz, and J. Mulawka, “GAVaPS—A genetic algorithm with varying population size,” in Proc. IEEE Int. Conf. on Evolutionary Computation, Orlando, pp. 73–78, 1994. [53] R. Tanese, “Distributed genetic algorithm,” in Proc. Int. Conf. Genetic Algorithms, pp. 434–439, 1989. [54] R. J. Collins and D. R. Jefferson, “Selection in massively parallel genetic algorithms,” in Proc. Int. Conf. Genetic Algorithms, pp. 249–256, 1991. [55] C. J. Lin,Y. J. Xu, “A novel evolution learning for recurrent wavelet-based neuro-fuzzy networks,” accepted to appear in Soft Computing, 2005. [56] M. C. Hung and D. L. Yang, “The efficient fuzzy c-means clustering technique,” in Proc. IEEE Int. Conf. Data Mining, pp. 225 -232, Dec. 2001. [57] J. He, L. Liu and G. Palm, “Speaker identification using hybrid LVQ-SLP networks,” in Proc. IEEE Int. Conf. Neural Networks, vol. 4, pp. 2052 -2055, Dec. 1995. [58] K. K. Ang, C. Quek, and M. Pasquier, “POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 33, no. 6, pp. 838–849, Dec. 2003. [59] A. G. Barto and R. S. Sutton, “Landmark learning: An illustration of associative search,” Biol. Cybern. Vol. 42, pp. 1-8, 1981. [60] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that can solve difficult learning control problem,” IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no 5, pp. 834-847, 1983. [61] K. C. Cheok and N. K. Loh, “A ball-balancing demonstration of optimal and disturbance-accommodating control,” IEEE Contr. Syst. Mag., pp. 54–57, 1987. [62] R. H. Cannon, Jr., Dynamics of Physical Systems. New York: Mc- Graw-Hill, 1967.
[63] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 46–63, Feb. 1994. [64] D. Whitley, S. Dominic, R. Das, and C. W. Anderson, “Genetic reinforcement learning for neuro control problems,” Mach. Learn., vol. 13, pp. 259–284, 1993.
|