(44.192.70.216) 您好!臺灣時間:2021/05/09 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱志偉
研究生(外文):Jyh-Woei Chu
論文名稱:增加以服務品質為基礎IEEE802.11e無線網路的傳輸量與其效能分析
論文名稱(外文):Performance Analysis for Increasing Throughput in QoS-based IEEE 802.11e Wireless Networks
指導教授:張本杰張本杰引用關係
指導教授(外文):Ben-Jye Chang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:40
中文關鍵詞:wireless LANcontention windowQoSEDCAIEEE 802.11eMarkov chain model
外文關鍵詞:EDCAQoScontention windowMarkov chain modelwireless LANIEEE 802.11e
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
IEEE 802.11標準採用Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA)協定,但是對不同類別traffic無法提供delay-bound與服務品質保証(Quality of Service, QoS),所以IEEE於近年提出802.11e無線區域網路新標準,來增強傳統IEEE 802.11 MAC層支援多類別traffic的QoS能力。在IEEE 802.11e中提出一項新的MAC層存取方式Hybrid Coordination Function(HCF),包含:(1)免競爭式(contention-free)中樞控制的HCF,又稱之為HCF Controlled Channel Access(HCCA);(2)競爭式基礎(contention-based)的HCF,又稱之為Enhanced Distributed Channel Access(EDCA)。在無線隨機網路中,EDCA模式能獲得較佳的Throughput與隨機存取的特性,然而802.11e的EDCA模式存在一些可改善之處:(1)過多的不明確traffic類別造成contention window控制機制的複雜度過高和(2)不同類別traffic於傳送成功後的碰撞機率偏高等問題。因此,在本篇論文中,我們提出新的簡化traffic分類和新的contention window競爭控制機制。我們方法主要有兩項貢獻:(1)藉由高低兩類優先權的簡化分類準則,達到QoS的支援功能與有效的contention window控制並捨棄AIFS之機制;(2)有效的調整競爭視窗的方式,改善IEEE 802.11e EDCA中每一類traffic於傳送成功後,contention window將重置為 ,減少額外碰撞的機率。此外,我們對所提出的方法進行Markov Decision Process分析,由分析與模擬數據可看出,我們對所提出的方法與IEEE 802.11e的EDCA相比較,在不同的Node數量、 和retransmission limit條件下,我們的方法在Throughput、Delay和Frame dropping probability方面皆優於EDCA,並能提供比802.11e的EDCA更簡單化和有效率的QoS表現。
IEEE 802.11e proposed a new MAC protocol, Hybrid Coordination Function (HCF), for achieving QoS with multiple classes of traffic for real-time multimedia services in wireless LANs (WLANs). HCF provides two modes of channel access – the contention free-based mode of HCF Controlled Channel Access (HCCA) and the contention-based of Enhanced Distributed Channel Access (EDCA). Nevertheless, EDCA is suitable for medium-scale wireless random access networks with moderate throughput. In consequence, two issues in EDCA should be addressed for minimizing collision probability and maximizing throughput. First, EDCA supports the same minimum window for different classes traffic, which increases the collision probability from different classes of traffic. Second, the successful transmission traffic will transit to the minimum backoff stage, which causes unnecessary collisions from the same class traffic. Therefore, in this paper, we first propose a simple, efficient classification of traffic classes. Then, a high performance EDCA approach (H-EDCA), i.e., a distributed differentiated control of contention window, is proposed for suppressing unnecessary collisions from the same class traffic and different classes traffic. Moreover, the performance of throughput, average transmission delay, and frame dropping probability, are analyzed in detail based on the discrete-time Markov chain model. Numerical results demonstrate that the proposed H-EDCA approach outperforms significantly EDCA of IEEE 802.11e in above three performance metrics.
摘要 I
Abstract II
誌謝 III
Contents V
Table of tables VI
List of figures VII
Chapter 1 INTRODUCTION 8
1-1 Review IEEE 802.11e 8
Chapter 2 NETWORKS MODEL 13
Chapter 3 HIGH PERFORMANCE EDCA APPROACH 16
A. The Case of Frame Collision 18
B. The Case of Successful Frame Transmission 19
C. The Case of Sensing Channel Idle 20
Chapter 4 MARKOV CHAIN ANALYSIS OF THE H-EDCA APPROACH 21
A. Markov Chain Model of H-EDCA 21
B. Throughput Analysis 26
C. Average Transmission Delay Analysis 28
D. Frame Dropping Probability Analysis 29
Chapter 5 NUMERICAL RESULTS 31
Chapter 6 CONCLUSIONS AND FUTURE WORKS 39
REFERENCES 40
[1] IEEE 802.11 WG, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE 802.11 Standard, 1999.
[2] IEEE P802.11e/D11.0, October 2004.
[3] G. Bianchi, “IEEE 802.11--Saturation Throughput Analysis,” IEEE Communications Letters, Vol. 2, No. 12, pp. 318-320, Dec. 1998.
[4] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE J-SAC, Vol. 18, No. 3, pp.535-547, Mar. 2000.
[5] E. Ziouva and T. Antonakopoulos, “CSMA/CA performance under high traffic conditions: throughput and delay analysis,” Computer Communications, Vol. 25, No. 3, pp. 313-321, 2002.
[6] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement,” IEEE INFOCOM, Vol. 2, pp. 599-607, June 2002.
[7] Chonggang Wang, Bo Li, and Lemin Li, “A new collision resolution mechanism to enhance the performance of IEEE 802.11 DCF,” IEEE Transactions on Vehicular Technology, Vol. 53, Issue 4, pp.1235-1246, July 2004.
[8] S. Mangold, S. Choi, P. May, O. Kein, G. Hiertz, and L. Stibor, “IEEE 802.11e Wireless LAN for Quality of Service,” Proceedings of European Wireless ’02, 2002.
[9] Yang Xiao, “IEEE 802.11e: QoS provisioning at the MAC layer,” Wireless Communications, Vol. 11, Issue 3, June 2004.
[10] Y. Xiao, “A Simple and Effective Priority Scheme for IEEE 802.11,” IEEE Communications Letters, Vol. 7, No. 2, pp.70-72, Feb. 2003.
[11] Yang Xiao, “Performance analysis of IEEE 802.11e EDCF under saturation Condition,” IEEE ICC2004, Vol. 1, pp.170 – 174, June 2004.
[12] Zhen-Ning Kong, Tsang, D.H.K. B. Bensaou and Deyun Gao, “Performance Analysis of IEEE 802.11e Contention-Based Channel Access,” IEEE Journal on Selected Areas in Communications, Vol. 22, Issue 10, pp. 2095 - 2106, Dec. 2004.
[13] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band, IEEE 802.11b Standard, 2000.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 18.洪忠修,2003.07,淺談農村規劃策進休閒農業發展之構想 ,農業經營管理會訊, 頁26-28。
2. 17.侯錦雄,1998,入口、圍牆設計,農業世界,頁51-52。
3. 15.李國明,2000,宜蘭地區休閒農業發展現況,花蓮區農業專訊,頁20-24。
4. 14.李明晃,1997,台灣休閒農業發展現況及存在問題,「農業世界雜誌」,第169期,p.11-15。
5. 13.江榮吉,2000,休閒農業整體規劃與開發,農業經營管理會訊,頁5-7。
6. 11.江昱仁、劉惠國,2003,農村旅遊地審美環境營造之探討,真理觀光學報,頁23-37。
7. 9.王小璘、賴宣愷,1999,休閒農業區土地使用目標規劃模式之研究,東海學報, 頁65-82。
8. 8.王小璘、張舒雅,1993,休閒農業資源分類系統之研究,戶外遊憩研究,頁1-30。
9. 7.王小璘,1995,休閒漁業的景觀規劃,造園季刊,頁54-61。
10. 19.張宏維、賴光邦,2002,休閒農業設施適用法規體系之研究,中國農業經營管理學會,農業經營管理年刊,第八期,頁66-99。
11. 21.陳昭郎,1996,綠色資源的永續利用--休閒農業的發展方向,大自然,頁4-13。
12. 22.陳昭郎,1997,休閒農業區之發展與農村整體規劃之整合,「農業世界雜誌」,第169期,p.16-18。
13. 23.陳英仁,1993,高雄區休閒農業資源規劃探討,臺灣農業 29(1):94-103。
14. 27.葉美秀,2003.03,生態、藝術、生活化由德國經驗談對臺灣休閒農業景觀設計觀念之啟發,造園季刊,頁5-10。
15. 28.葉結實、段兆麟,2002.12,體驗經濟觀點的休閒農場遊憩管理構思,農業經營管理,頁197-222。
 
系統版面圖檔 系統版面圖檔