跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳保孝
研究生(外文):Pao-Hsiao Chen
論文名稱:在時間限制及資訊不完整情況下動態議價策略之研究
論文名稱(外文):A Study on Dynamic Bargaining Strategy under Time Constraints and with Incomplete Information
指導教授:李富民李富民引用關係
指導教授(外文):Fu-Ming Lee
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:155
中文關鍵詞:時間限制智慧型代理人動態議價策略資訊不完整
外文關鍵詞:Incomplete informationTime constraintsDynamic bargaining strategyIntelligent agents
相關次數:
  • 被引用被引用:1
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
在網際網路中,買賣雙方在時間限制及資訊不完整情況下,藉由智慧型代理人進行議價活動,往往因為議價過程中不能得知對方的時間限制、保留價及議價策略,無法產生有效的議價策略,導致議價失敗或效用不佳。整個議價活動的核心在於雙方所使用的議價策略,議價策略會影響雙方的議價效用及成交率。本研究先針對議價協定進行分析,並對議價協定中四種不同的買賣雙方出價順序提出四個簡單且新穎的動態議價策略演算法,假設當賣方先出價時,以買方觀點為例,該演算法會動態地預測賣方未來的可能出價,並藉由最大化未來買方可能成交效用的概念,動態地改變買方的議價策略。再者,經由本研究針對上述四個動態議價策略演算法的實驗結果顯示,在上述時間限制及資訊不完整情況下,無論是僅單方利用本研究所提出之動態議價策略演算法進行出價,或者是買賣雙方均利用動態議價策略演算法出價,均可以大幅提高買賣雙方的議價效用及成交率。
On the Internet, the bilateral bargaining agents will often fall into failure or cause poor utility value at the end of bargaining under time constraints and with incomplete information. The core of bargaining activities is the bargaining strategies of both agents. In this thesis, we analyse the offering sequence of bargaining protocol and propose four dynamic bargaining algorithms with novel and simple characteristics to make offers. Give an example, if seller makes offer firstly, in the view of buyer, the algorithm will predict the seller’s possible offers for the consecutive rounds with little information about seller’s deadline, reservation price, and bargaining strategy. Then, it revises buyer’s offer function to maximize its utility in one possible agreement point. The experimental results for the four algorithms show that the algorithms will enhance the ratio of reaching agreement and the utility value at the end of the bargaining.
摘要 i
Abstract iv
致謝 v
目錄 vi
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1研究動機及目的 1
1.2研究流程 3
1.3論文架構 5
第二章 文獻探討 6
2.1 議價定義 6
2.2 自動化議價相關研究 8
2.3自動化議價模式 14
2.3.1資訊狀態 16
2.3.2 岀價函數 17
2.3.3 議價策略 19
2.3.4 議價協定 21
第三章 議價效用函數及動態議價策略演算法 23
3.1 議價效用函數 23
3.2動態議價策略演算法 25
3.2.1賣方先出價 25
3.2.1.1 買方動態議價策略演算法A1 25
3.2.1.2賣方動態議價策略演算法A2 27
3.2.2買方先出價 29
3.2.2.1買方動態議價策略演算法A3 29
3.2.2.2 賣方動態議價策略演算法A4 32
第四章 實驗說明及實驗結果 34
4.1 實驗說明 34
4.2 實驗假設 36
4.3實驗評估方法 39
4.4實驗結果 41
4.4.1實驗類型一:賣方先出價,賣方依照出價函數(2)出價,買方依照演算法A1出價 41
4.4.1.1實驗情況一:買賣雙方議價時限相對大小的影響 41
4.4.1.2實驗情況二:買方初始價與賣方保留價相對大小的影響 47
4.4.1.3實驗情況三:買方保留價與賣方初始價相對大小的影響 53
4.4.2實驗類型二:賣方先出價,賣方依照演算法A2,買方依照出價函數(1)出價 58
4.4.2.1實驗情況一:買賣雙方議價時限相對大小的影響 60
4.4.2.2實驗情況二:買方初始價與賣方保留價相對大小的影響 65
4.4.2.3實驗情況三:買方保留價與賣方初始價相對大小影響 70
4.4.3實驗類型三:賣方先出價,買方依照演算法A1出價,賣方依照演算法A2出價 76
4.4.3.1實驗情況一:買賣雙方議價時限相對大小的影響 76
4.4.3.2實驗情況二:買方初始價與賣方保留價相對大小的影響 82
4.4.3.3實驗情況三:買方保留價與賣方初始價相對大小的影響 87
4.4.4實驗類型四:買方先出價,賣方依照出價函數(2)岀價,買方依照演算法A3出價 94
4.4.4.1實驗情況一:買賣雙方議價時限相對大小的影響 94
4.4.4.2實驗情況二:買方初始價與賣方保留價相對大小的影響 99
4.4.4.3實驗情況三:買方保留價與賣方初始價相對大小的影響 104
4.4.5 實驗類型五:買方先出價,賣方依照演算法A4出價,買方依照出價函數(1)出價 110
4.4.5.1實驗情況一:買賣雙方議價時限相對大小的影響 112
4.4.5.2實驗情況二:買方初始價與賣方保留價相對大小的影響 117
4.4.5.3實驗情況三:買方保留價與賣方初始價相對大小的影響 122
4.4.6 實驗類型六:買方先出價,買方依照演算法A3出價,賣方依照演算法A4出價 128
4.4.6.1實驗情況一:買賣雙方議價時限相對大小的影響 128
4.4.6.2實驗情況二:買方初始價與賣方保留價相對大小的影響 133
4.4.6.3實驗情況三:買方保留價與賣方初始價相對大小的影響 138
4.4實驗總結 146
5.結論與未來發展 149
5.1結論 149
5.2 未來發展 150
參考文獻 151
[1]王如芬(2000),電子商務中議價代理人讓步策略之研究,碩士論文,國立中山大學,高雄。
[2]吳文華(1992),讓步策略與談判結果之影響,碩士論文,國立台灣科技大學,台北。
[3]許誌雄(2003),應用顧客情況管理制定電子商務代理人之議價策略,碩士論文,朝陽科技大學,台中。
[4]M. Bichler, M. Kaukal, and A. Segev, (1999), “Multiattribute Auction for Electronic Procurement,” Proceedings of the 1st IBM IAC Workshop on Internet Based Negotiation Technologies, Yorktown Heights, USA, pp. 1-13.
[5]A. Chavez and P. Maes, (1996), “Kasbah: An Agent Marketplace for Buying and Selling Goods,” Proceedings of the 1st International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, London, UK.
[6]P. Faratin, C. Sierra, and N. R. Jennings, (1998), “Negotiation Decision Functions for Autonomous Agents,” International Journal of Robotics and Autonomous Systems, Vol. 24, No. 3-4, pp. 159-182.
[7]P. Faratin, C. Sierra, and N. R. Jennings, (2002), "Using Similarity Criteria to Make Trade-offs in Automated Negotiations," Artificial Intelligence, Vol. 142, No. 2, pp. 205-237.
[8]S. Fatima, M. Wooldridge, and N. R. Jennings, (2001), "Optimal Negotiation Strategies for Agents with Incomplete Information," Proceeding of the 8th International Workshop on Agent Theories, Architectures and Languages, Seattle, USA , pp. 53-68.
[9]S. Fatima, M. Wooldridge, and N. R. Jennings, (2004), "Bargaining with incomplete information," Annals of Mathematics and Artificial Intelligence, to appear.
[10]S. Fatima, M. Wooldridge, and N. R. Jennings, (2004), “An Agenda Based Framework for Multi-Issues Negotiation,” Artificial Intelligence, Vol. 152, No. 1, pp. 1-45.
[11]C. Fershtman, (1990), “The Importance of The Agenda in Bargaining,” Games and Economic Behavior, Vol. 2, pp. 224–238.
[12]P. C. Fishburn and A. Rubinstein, (1982), “Time Preference,” Internat. Econom., Rev. 23, pp. 677-694.
[13]D. Fudenberg, D. Levine, and J. Tirole, (1985), Infinite Horizon Models of Bargaining with One Sided Incomplete Information, Game Theoretic Models of Bargaining, University of Cambridge Press, Cambridge, England, UK.
[14]R, Guttman, A. Moukas, and P. Maes, (1998), “Agent-Mediated Electronic Commerce: A Survey,” Knowledge Engineering Review, Vol. 3, No. 2, pp. 147-159.
[15]N. R. Jennings, S. Parson, C. Sierra, and P. Faratin, (2000), “Automated Negotiation,” Proceedings of the 5th International Conference on the Practical Application of Intelligent Agents and Multi - Agent Systems, Manchester, UK, pp. 23-30.
[16]R. Kalakota and A. B.Whinston, (1997), Electronic Commerce: A Manager’s Guide, Addison-Wesley Publishing, Boston, USA.
[17]S. Kraus, J. Wilkenfeld, and G. Zlotkin, (1995), “Multiagent Negotiation under Time Constraints,” Artificial Intelligence Journal, Vol. 75, No. 2, pp. 297-345.
[18]S. Kraus, K. Sycara, and A. Evenchik, (1998), “Reaching Agreements through Argumentation: A Logical Model and Implementation,” Artificial Intelligence, Vol. 104, No. 1-2, pp. 1-69.
[19]S. Kraus, (2001), Strategic Negotiation in Multiagent Environments, MIT Press, Cambridge, Massachusetts, London, UK.
[20]T. P. Liang and H. S. Doong, (2000), “Effect of Bargaining in Electronic Commerce,” International Journal of Electronic Commerce, Vol. 4, No. 3, pp. 23-48.
[21]T. P. Liang and J. S. Huang, (2000), “A Framework for Applying Intelligent Agents to Support Electronic Trading,” Decision Support Systems, Vol. 28, No. 4, pp. 305-317.
[22]P. Maes, R. H. Guttman, and A. G. Moukas, (1999), "Agents that buy and sell," Communication of ACM, Vol. 42, No. 3, pp. 81-91.
[23]J. von Neumann and O. Morgenstren, (1947), Theory of Games and Economic Behavior, Princeton University Press, Princeton.
[24]M. J. Osborne and A. Rubinstein, (1994), A Course in Game Theory, MIT Press, Cambridge, Massachusetts, London, UK.
[25]S. Parson, C. Sierra, and N. R. Jennings, (1998), “Agents that Reason and Negotiate by Arguing,” Journal of Logic and Computation, Vol. 8, No. 3, pp. 261-292.
[26]D. G. Pruitt, (1981), Negotiation Behavior, Academic Press, New York, USA.
[27]H. Raiffa, (1982), The Art and Science of Negotiation, Harvard University Press, Cambridge, Massachusetts, London, UK.
[28]J. S. Rosenscheinn and G. Zlotkin, (1994), Roles of Encounter, MIT Press, Cambridge, Massachusetts, London, UK.
[29]T. Sandholm and V. Lesser, (1997), “Issues in Automated Negotiation and Electronic Commerce,” Reading in Agents, M. Huhns and M. Singh, Morgan Kaufmann Publishers, pp. 66-73.
[30]T. Sandholm, S. Sikka, and S. Norden, (1999), “Algorithms for Optimizing Leveled Commitment Contracts,” Proceedings of the 6th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 535–541.
[31]V. W. Soo and C. A. Hung, (2002), “Learning to Negotiate under Time Bounded Messages in Multi-Issue Negotiation,” Proceedings of the 7th Conference on Artificial Intelligence and Applications, Taichung, Taiwan, pp. 131-136.
[32]K. Sycara, (1988), “Using Case-Based Reasoning for plan Adaptation and Repair,” Proceedings of the 1988 Case-Based Reasoning Workshop, Clearwater Beach, Florida, pp. 425-434.
[33]S. T. Yuan and S. F. Chen, (2001), “A Learning-Enabled Infrastructure for Electronic Contracting Agents,” Expert System with Applications, Vol. 2, No. 3, pp. 239-256.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top