跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 21:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱嘉裕
研究生(外文):Chia-Yu Chiu
論文名稱:以敲擊回音法探討壓力及剪力波速與土壤夯實狀態之初步研究
論文名稱(外文):A preliminary study of exploring the relationship between P- and S-speeds measured by impact-echo method and the compacting condition of soil
指導教授:鄭家齊鄭家齊引用關係賴俊仁賴俊仁引用關係
指導教授(外文):Chia-Chi ChengJiun-Ren Lai
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:116
中文關鍵詞:敲擊回音法土壤夯實壓力波速剪力波速
外文關鍵詞:impact-echo methodP speedS speedcompacting condition of soil
相關次數:
  • 被引用被引用:3
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
「夯實」品質決定填方工程之品質,其目的在於(1)增加土壤的抗剪強度,以提高基礎的承載力,填築邊坡的穩定性,(2)減小壓縮性(壓密沉陷)降低未來之沉陷量,可減少或防止有害沉陷之情形發生,(3)降低滲透性,增強抗土壤抗滲能力。
本論文研究的目的在探討使用敲擊回音法來檢測壓力及剪力波速與土壤夯實狀態,包括壓力及剪力波速與土壤密度、含水量及加州承載比間之關係,期能獲得相關研究成果,以評估日後是否有可取代填方工程中耗力費時之工地密度充砂法或具有危險性之核子工地密度及含水量試驗之可能性。
本論文主要是採用寶山第二水庫計畫—大壩工程之特別輾壓材料、心層及殼層填方土壤材料,該土壤材料彼此間之工程性質迥異,進行壓力及剪力波速與土壤密度、含水量及加州承載比試驗,期能尋求出其彼此間之關係。
本論文研究發現:(1) 當夯實試體之含水量在乾側(即含水量低於最佳含水量)時,隨著含水量逐漸增加,土壤夯實乾密度逐漸增大,壓力波速及剪力波速亦均隨之增快,夯實乾密度越大則波速越快,及至趨近最佳含水量前約幾﹪之含水量時,其壓力波速及剪力波速均隨著含水量逐漸增加而大幅降低。(2) 在固定夯實能量時隨著夯實乾密度逐漸增加,壓力波速亦隨之大幅增加,至某一特定土壤夯實乾密度時,產生急遽下降之情形(3) 在固定含水量狀況下隨著夯實乾密度逐漸增加,兩種土壤之壓力波速及剪力波速亦隨之增加。(4) 波速與加州承載比關係中,顯示出波速會隨著加州承載比值的上升而呈現增加的趨勢。(5) 彈性模數隨著加州承載比增加而增加,有成正比的趨勢,將來實際應用時可利用E值估計承載力。
The quality of “compaction” is a conclusive factor to the quality of an embankment project. Compaction of an embankment aims at (1) to increase the shearing strength for improving the bearing capacity of foundation and/or the stability of side slope of embankment, (2) to reduce the compressibility (consolidation settlement) for decreasing future settlement, on account of minimizing or preventing occurrence of hazardous settlement,(3) to decrease the permeability for improving the imperviousness.
The purpose of study is to examine a method of measuring the velocities of P-wave and S-wave by an Impact-Echo method to evaluate the compacted conditions of the embankment, including the relationship between the velocities of P-wave and S-wave and the density, water content, and CBR, on account of evaluating the possibility of replacing the labor and time consuming Sand-Cone method or the dangerous nuclear method with the Impact-Echo method in measuring field densities and moisture contents.
The materials used in the study of this thesis are the contact clay, and the core and shell materials to be placed in the PaoShan Second Reservoir Project. The engineering properties of these materials are quite different mutually. Performing P-wave and S-wave velocity measurement, and tests of density, moisture content and CBR, in expectation of being able to find out some relationship among these test data.
From this study, the following have been found:(1) As the compacted dry density of the embankment increases gradually, the velocities of P-wave and S-wave also increase gradually. Higher the compacted dry density, faster the P-wave and S-wave velocities become. Up until the compacted dry density approaching the maximum, the wave velocities start to decrease in reverse. When the compacted dry density begins to decrease, the wave velocities decrease significantly; (2) P-wave and S-wave velocities decrease sharply as the water content increase gradually;(3) Under a fixed water content, following gradual increase of compacted dry density, the p- and s- velocities of the embankment increase. However, for overly high water content, the wave velocities become unstable and the relationship between the wave velocities and the compacted dry density is indistinct;(4) the relationship between the wave velocities and the CBR indicates that the wave velocities have a tendency to increase following the CBR value increase;(5) The CBR value has the tendency of increase proportionally with the elastic modulus obtained from the wet density, and speeds of P and S waves. Thus, with correct measurement of P and S-wave, it is possible to evaluate the bearing capacity of soil in field via the calculated elastic modulus.
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-2-1 研究動機 1
1-2-2 研究目的 2
第二章 檢測原理及文獻回顧 4
2-1檢測原理 4
2-1-1應力波動基本行為之介紹 4
2-1-2敲擊回音法量測波速之基本原理 5
2-1-3土壤最大乾密度及最佳含水量量測之基本原理 7
2-2文獻回顧 9
2-2-1傳統工地密度試驗 9
2-2-2核子工地密度及含水量試驗 11
2-2-3波速量測 12
第三章 實驗步驟及方法 20
3-1 研究構想 20
3-2普羅克達(Proctor)夯實試驗 21
3-2-1夯實試驗之儀器設備 21
3-2-2夯實密度試驗之程序 21
3-3波速檢測(敲擊回音法,Impact-Echo)試驗 23
3-3-1波速檢測之儀器設備 23
3-3-2波速檢測之程序 25
3-4室內加州承載比試驗(California Bearing Ratio) 27
3-4-1室內加州承載比試驗之儀器設備 27
3-4-2室內加州承載比試驗之程序 28
第四章 檢測結果與討論 53
4-1土壤之基本物理性質 53
4-2土壤密度與含水量關係 53
4-3波速與土壤密度關係 55
4-4波速與土壤含水量關係 57
4-5波速與加州承載比關係 58
第五章 結論與建議 111
5-1結論 111
5-2建議 112
參考文獻 114
1.Lysmer, J. and Richart, F.E., Jr., (1966) “Dynamic Response of Footings to Vertical Loading,” Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol. 92, No. SM1, pp. 65-91.
2.Lamb, H. (1904), “On the Propagation of Tremors over the Surface of an Elastic Solid,” Philosophical Transactions of the Royal Society, London, Ser. A, Vol. 203, pp. 1-42.
3.ASTM (1998), “Standard Test Methods for Measuring the Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Methods,” Annual Book of ASTM Standards, C-1383, Vol. 04.02, West Conshohocken, PA.
4.ASTM (1942), “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” Annual Book of ASTM Standards, D-698, Vol. 04.08, West Conshohocken, PA.
5.ASTM (1958), “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort,” Annual Book of ASTM Standards, D-1557, Vol. 04.08, West Conshohocken, PA.
6.ASTM (1958), “Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method,” Annual Book of ASTM Standards, D-1556, Vol. 04.08, West Conshohocken, PA.
7.ASTM (1989), “Standard Test Methods for Density of Soil and Rock in Place by Water Replacement Methods in a Test Pit,” Annual Book of ASTM Standards, D-5030, Vol. 04.08, West Conshohocken, PA.
8.ASTM (1963), “Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method,” Annual Book of ASTM Standards, D-2167, Vol. 04.08, West Conshohocken, PA.
9.Proctor, R.R. (1933), “Design and Construction of Rolled Earth Dams,” Engineering News Record, Vol. 3, pp. 245-248, 286-289, 348-351, 372-376.
10.Das, B.M. (2002), “Principles of Geotechnical Engineering,” 6th Ed., Thomson Learning Inc., CA.
11.ASTM (1971), “Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods,” Annual Book of ASTM Standards, D-2922, Vol. 04.08, West Conshohocken, PA.
12.ASTM (1996), “Standard Test Methods for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth),” Annual Book of ASTM Standards, D-3017, Vol. 04.08, West Conshohocken, PA.
13.McCarthy, D.F. (1998), “Essentials of Soil Mechanics and Foundations – Basic Geotechnics,” 5th Ed., Prentice Hall Inc., NJ.
14.Biot, M.A. (1956a), “Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid, I: Low-Frequency Range,” Journal of Acoustic Society of America, Vol. 28, pp.168-178.
15.Biot, M.A. (1956b), “Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid, II: Higher Frequency Range,” Journal of Acoustic Society of America, Vol. 28, pp.179-191.
16.Wood, A.B. (1930), “A Text Book of Sound,” Bell and Sons, London.
17.Allen, N.F., Richart F.E., and Woods, R.D. (1980), “Fluid Wave Propagation in Saturated and Nearly Saturated Sands,” Journal of the Geotechnical Engineering, ASCE, Vol. 106, No. GT3, pp. 235-254.
18.Berryman, J.G., Berge, P.A., and Bonner B.P. (2002), “Estimating Rock Porosity and Fluid Saturation Using Only Seismic Velocities,” Geophysics, Vol. 67, No.2, pp. 391-404.
19.Rix, G.J. and Stokoe, K.H. II (1989) “Stiffness Profiling of Pavement Subgrades,” Transportation Research Board, pp. 1-37.
20.Kim, D.S. and Park, H.C. (1999), “Evaluation of Ground Densification Using SASW and Resonant column Tests,” Canadian Geotechnical Journal, Vol. 36, No. 2, pp. 291-299.
21.Kim, D.S., Shin, M.N., and Park, H.C. (2001), “Evaluation of Density in Layer Compaction Using SASW Methods,” Soil Dynamics and Earthquake Engineering, Vol. 21, pp. 39-46.
22.Topp, G.C., Davis, J.L., and Annan, A.P. (1980), “Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines,” Water Resource Reservation, Vol. 6, No. 3, pp. 574-582.
23.Benson, C.H. and Bosscher, P.J. (1999), “Time Domain Reflectometry (TDR) in Geotechnics: A Review, Nondestructive and Automated Testing for Soil and Rock Properties,” ASTM SPT 1350, West Conshohocken, PA.
24.Noborio, K. (2001), “Measurement of Soil Water Content and Electric Conductivity by Time Domain Reflectometry: a Review,” Computational Electronic Agriculture, Vol. 31, No. 3, pp. 213-237.
25.Siddiqui, S.I. and Drnevich, V.P. (1995), “A New Method of Measuring Water Content and Density of Soil using the Technique of Time Domain Reflectometry,” Rep. No.:FHWA/JTRP-95/9, Joint Transportation Research Program, Indiana Department of Transportation – Purdue University.
26.ASTM (2003), “Standard Test Methods for Water Content and Density of Soil in Place by Time Domain Reflectometry (TDR),” Annual Book of ASTM Standards, D-6780, Vol. 04.09, West Conshohocken, PA.
27.Yu, X., and Drnevich, V.P. (2004), “Soil Water Content and Dry Density by Time Domain Reflectometry,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No. 9, pp.922-934.
28.Woods, R.D. (1968), “Screening of Surface Waves in Soils,” Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol. 94, No. SM4, pp. 951-979.
29.沈茂松(1988),「實用土壤力學試驗」,增定第八版,文笙書局,Apr.2001,pp.197
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1. 方孝謙,2002,「解釋鄉鎮企業變遷的制度與關係理論:社會學的利基何在?」,《臺灣社會學刊》,第29期,頁181-212。
2. 3. 王信賢,2000,「中國大陸國企改革的『組織焊接』-『吳江絲綢股份有限公司』籌組之分析」,《中國大陸研究》,第43卷第12期,頁37-61。
3. 4. 王嘉州,2003,「財政制度變遷時中央與地方策略互動之分析--以分稅制與廣東省為例」,《中國大陸研究》,第46卷第5期,頁81-103。
4. 5. 王耀興,2003,「金融管制與金融自由化的迷思」,《財稅研究》,第35卷6期,頁22-46。
5. 6. 石之瑜,1997,「新制度主義建構理性中國的成本」,《問題與研究》,第36卷第11期,頁1-22。
6. 9. 李和,2004,「中國大陸的改革路徑與意涵」,《中國大陸研究》,第4期,頁1-19。
7. 10. 李宗勳,1995,「新制度論與公共行政--兼論公、私部門之權力分享」,《警政學報》,第26卷,頁193-224。
8. 11. 李建良,2000,「論停建核四電廠的憲法爭議」,《月旦法學雜誌》,第67期,頁37-49。
9. 12. 李惠宗,2004,《對立法權制衡制度之探討》,《月旦法學雜誌》,第109期,頁89-99 。
10. 13. 宋國誠,2000,「產權理論與中國大陸的國有企業改革」,《中國大陸研究》,第43卷第3期,頁27-57
11. 14. 吳玉山,2001,「制度、結構與政治穩定」,《政治學報》,第32期,頁1-30。
12. 15. 吳志光,1999,「憲法變遷與國家發展」,《中大社會文化學報》,第8期,頁11-29。
13. 16. 況正吉,1999,「憲政制度與政治文化對俄羅斯民主革鞏固的影響」,《問題與研究》,第38卷第11期,頁31-51。
14. 17. 林孟皇,2000,「釋憲權與立法權之權限分際-從『立法者的形成自由』概念談起」,《立法院院聞》,第28卷第2期, 頁 64-81。
15. 18. 周良黛,1998,「大法官會議憲法解釋與憲政制度之成長--釋憲案與立法權之調適」,《憲政時代》,第23卷第3期,頁97-146。