(3.238.96.184) 您好!臺灣時間:2021/05/12 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:何仁溫
研究生(外文):Jen-Wen Ho
論文名稱:沉泥質砂土中傾斜承拉式摩擦型地錨之三向度分析
論文名稱(外文):A Three Dimensional Study on the Inclined Shaft Tension Anchors in Silty Sand
指導教授:許世宗許世宗引用關係
指導教授(外文):Shih-Tsung Hsu
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:223
中文關鍵詞:錨碇力沉泥質砂傾斜承拉式地錨三向度分析
外文關鍵詞:anchorage capacitysilty sandinclined tension anchors3-D analyses
相關次數:
  • 被引用被引用:13
  • 點閱點閱:248
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
為探討沉泥質砂土中傾斜承拉式摩擦型地錨之錨碇行為,本文使用SHASOVOD模式(A Strain Hardening-Softening and Volumetric Dilatancy Model)配合FLAC3D軟體進行傾斜承拉式摩擦型地錨之三向度分析,並以現場試驗結果驗證數值分析結果之正確性。
由研究過程發現,傾斜承拉式摩擦型地錨之錨碇力主要係來自摩擦力。在相對密度Dr=30%的沉泥質砂土中,發揮尖峰摩擦力所需之位移量約為35%D(D:地錨直徑),達殘餘摩擦力之位移量約為65%D。
為避免傾斜地錨降伏範圍可能會發展至地表與結構壁體,本研究建議傾斜地錨之最小覆土深度Hmin應大於3m,最小埋入深度Zmin應大於2m。當相對密度較高或錨碇段長度較長,於地錨達極限拉拔力時,其降伏範圍也較大。而當相對密度提升時,降伏面呈更對稱的橢圓型;而增加錨碇段長度時,降伏面將呈較扁平的橢圓型。
無論是增加埋入深度、覆土深度或錨碇段長度皆可提升地錨之錨碇力,其中以增加錨碇段長度來提升錨碇力之效果為最佳,單位錨碇長度之錨碇力增量為55kN/m。但當錨碇段超過30m之後,其增加效果已呈低於線性之方式增加,此因地錨錨碇段周圍土壤的摩擦應力有漸進式降伏行為所致。當傾斜角度、埋入深度、覆土深度或錨碇段長度增加時,尖峰摩擦力下之側向土壓力Kf均呈現減少的現象,且小於被動土壓係數,但大於靜止土壓力係數。
A strain hardening-softening and volumetric expansion model named “SHASOVOD” and FLAC3D software were quoted to study the anchorage behavior of inclined shaft tension anchors in silty sand. A field test program was conducted to verify the applicability of the numerical program as well.
It was found that the friction force dominates the anchorage capacity of a shaft tension anchor. Of anchors installed in silty sand with relative density Dr of 30%, an anchor displacement of 35% D (D is the diameter of an anchor) is needed for the shaft friction reaches peak value, shaft friction approaches residual state at an anchor displacement of about 65% D.
It could avoid the yielding zone of an anchor develops to ground surface and structural wall, when the overburden depth and embedded depth are greater than 3m and 2m, respectively. As relative density of soil or fixed length of an anchor increased, the yielding zone also expanded when the anchor was stressed to ultimate load. A more symmetric elliptical yielding zone surround an anchor was found when relative density of sand increased, whereas a more flatter elliptic yielding zone can be seen while increasing fixed length of an anchor.
Whether embedded depth, overburden depth or fixed length of an anchor increased, the anchorage capacity also increased. Increasing fixed length should be the optimum method to increase the anchorage capacity, ultimate load perunit fixed length was about 55kN/m. However, when the fixed length of an anchor is greater 30m, the incremental of anchorage capacity per unit fixed length was decreased due to progressive yield of friction stress along fixed end. According to the numerical results, when the inclination angle, overburden depth, embedded depth, or fixed length increased, the coefficient of lateral earth pressure Kf decreased. The coefficient Kf always less than the coefficient of passive earth pressure Kp; however, it was greater than the coefficient of earth paessure at rest K0.
摘 要 I
ABSTRACT II
誌 謝 IV
目錄 V
表目錄 X
圖目錄 XI
照片目錄 XXI
符號說明 XXII
第一章 導論 1
1.1前言 1
1.2研究動機 2
1.3研究方法 2
第二章 文獻回顧 4
2.1地錨之構造 4
2.2 地錨之分類 5
2.3 地錨錨碇行為之研究方法 9
2.3.1 模型試驗 9
2.3.2 現場試驗 10
2.3.3 極限平衡理論 17
2.3.4 數值分析 17
2.4 地錨行為模式 20
2.4.1 地錨之受力行為 20
2.4.2 淺層地錨與深層地錨的分界 23
2.4.3 地錨破壞模式 26
2.4.4 地錨之錨碇力 29
2.4.5 地錨之荷重傳遞與摩擦力分佈情形 29
2.5 數值分析模式 31
2.5.1 塑性模式 31
2.5.2 砂土彈性-完全塑性行為 36
2.5.3 砂土的應變硬化-軟化與體積膨脹模式 38
2.6傾斜地錨之相關研究 46
第三章 數值分析模式與步驟 50
3.1 砂土之力學行為模式之建立 50
3.1.1 砂土之摩擦角 50
3.1.2 砂土的彈性模數與體積模數 51
3.1.3 砂土的應變硬化參數 52
3.1.4 砂土的應變軟化參數 54
3.1.5 砂土的膨脹參數 55
3.2 FLAC3D數值分析軟體介紹 56
3.2.1 FLAC3D的基本理論架構 57
3.2.2 FLAC3D內建的組合律模式 59
3.2.3 FLAC3D基本術語 61
3.2.4 FLAC3D之符號規定 62
3.2.5 FLAC3D基本分析步驟 63
3.2.6 FLAC3D基本網格型式 64
3.2.7 FLAC3D基本語法使用 66
3.3 數值分析的基本假設 68
3.4 網格之建立 68
3.5 灌漿材料參數選擇 69
3.6 模式應用於三軸試驗 69
3.7 邊界範圍的測試與邊界束制之選擇 70
3.8 材料模式之修正 72
3.9 數值分析步驟 74
第四章 地錨之施工與模擬 77
4.1 地錨之施工 77
4.2現場地錨之模擬 78
4.2.1地質概況與地錨配置 78
4.2.2現地地錨試驗結果 78
4.2.3數值分析參數 79
4.2.4數值分析之模擬結果 79
第五章 數值分析結果 81
5.1地錨拉拔力與位移之一般性描述 81
5.2不同條件下傾斜摩擦型地錨尖峰拉拔力以及降伏面之發展 82
5.2.1最小覆土深度與埋入深度 83
5.2.2不同相對密度之影響 83
5.2.3不同錨碇段長度之影響 83
5.3不同條件下地錨之錨碇行為 84
5.3.1不同埋入深度之影響 84
5.3.2不同覆土深度之影響 85
5.3.3不同錨碇段長度之影響 85
5.4應力的轉換 86
5.5地錨之側向土壓力係數 87
5.6地錨之荷重傳遞行為與摩擦應力分佈情形 88
5.7地錨周圍土壤之降伏情況 89
第六章 結論與建議 91
6.1結論 91
6.2建議 92
參考文獻 93
1.許世宗,「砂土中垂直地錨之錨碇行為」,國立台灣工業技術學院博士學位論文,台北,1995。
2.廖洪鈞、陳珍貴和張光甫,「緊密砂土中地錨間距對擴座地錨錨碇行為影響之研究」,中國土木水利工程學刊,第五卷,第一期,第45~55頁,1993。
3.Su, W. and Fragaszy, R. J., “Uplift Testing of Model Anchors.” Journal of Geotechnical Engineering Division, ASCE, Vol. 114, No. 9, pp. 961~983, 1988.
4.王國鐘,「砂土中垂直擴座地錨之三向度分析」,朝陽科技大學碩士學位論文,台中,2002。
5.歐大銓,「砂土中水平擴座地錨與垂直擴座地錨之錨碇行為」,朝陽科技大學碩士學位論文,台中,2002。
6.王少濂,「砂土中擴座地錨互制行為之研究」,朝陽科技大學碩士學位論文,台中,2003。
7.莊棓凱,「砂土中傾斜擴座地錨之錨碇行為」,朝陽科技大學碩士學位論文,台中,2003。
8.莊棓景,「沉泥質砂土中傾斜錐形擴座地錨之三向度分析」,朝陽科技大學碩士學位論文,台中,2004。
9.何思漢,「砂土中垂直擴座群錨之受力行為」朝陽科技大學碩士學位論文,台中,2004。
10.Hsu, S. T., “A Constitutive Model For The Uplift Behavior Of Anchors In Cohesionless Soils” Journal of the Chinese Institute of Engineers, Vol. 28, No. 2, pp. 305~317, 2005.
11.郭芷伶,「沉泥質細砂中錐形擴座地錨之錨碇行為」,朝陽科技大學碩士學位論文,台中,2000。
12.許世宗和郭芷伶「沈泥質砂土中錐形擴座地錨錨碇行為之影響參數研究」,朝陽學報,第六期,第375-401頁,2001。
13.Littlejohn, G. S., “Soil Anchors.” ICE Conference on Ground Engineering, London, pp. 33~44, 1970.
14.Littlejohn, G. S., “Design Estimation of the Ultimate Load-holding Capacity of Ground Anchors.” Ground Engineering, Vol. 13, No. 8, pp. 25~39, 1980.
15.Kulhawy, F. H., “Uplift Behavior of Shallow Soil Anchor-An Overview.” Proceedings of a Session Sponsored by the Geotechnical Engineering Division, ASCE, New York, pp. 1~25, 1985.
16.Das, B. M. and Seeley, G. R., “Inclined Load Resistance of Anchors in Sand.” Journal of Geotechnical Engineering Division, ASCE, Vol. 101, No. GT9, pp. 995~998, 1975.
17.Thorne, C. P. “Penetration and Load Capacity of Marine Drag Anchors in Soft Clay., ” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 10, pp. 945~953, 1998.
18.FIP Commission on Practical Construction, Recommendations for the Design and Construction of Prestressed Concrete Ground Anchors, FIP, Wexham Springs, pp. 31, 1982.
19.廖洪鈞,「土壤中葉片擴孔式擴座地錨之錨碇力」,中華民國第三屆大地工程學術研討會論文集,第617~681頁,1998。
20.許世宗和盧錫煥,「變直徑擴座地錨在粉土質細砂中之錨碇行為」,中華民國第六屆大地工程學術研討會論文集,第515~524頁,1995。
21.Hobst, L. and Zajic, J. Z. , Anchoring in Rock and Soil, Elsvier Scientific Publishing Company, New York, 1983.
22.Subba Rao, K. S. and Kumar, J., “Vertical Uplift Capacity of Horizontal Anchors.” Journal of Geotechnical Engineering Division, ASCE, Vol. 120, No. 7, pp. 1134-1147, 1994.
23.Rose R. K. & Davis E. H., “The Behavior of Anchor Plates in Sand.” Geotechnique, Vol. 32, No. 1, pp. 25~41, 1982.
24.廖洪鈞和許世宗,「緊砂中承壓式垂直擴座地錨之錨碇行為」,中國土木水利工學刊,第一一七卷,第五期,第773~793頁,1991。
25.Jeng, S. F. and Huang, H. T., “The Holding Mechanism of Under-reamed Rockbolts in Soft Rock.”, International Journal of Rock Mechanics and Mining Sciences, Vol. 39 pp. 761~775, 1999.
26.蘇定方,「緊砂中不同受力型式下水平模型地錨之荷重傳遞行為研究」,國立台灣工業技術學院碩士論文,台北,1993。
27.Toshinori, S. and Tadatsugu, T., “Scale Effect of a Shallow Circular Anchor in Dense Sand.” Soils and Foundations, Vol. 38, No. 2, pp. 93~99, 1999.
28.Ghaly, A., Hanna, A. and Hanna, M., “Uplift Behavior of Screw Anchors in Sand. I: Dry Sand.” Journal of Geotechnical Engineering Division, ASCE, Vol. 117, No. 5, pp. 773~793, 1991.
29.Ilamparuthi, K. and Muthukrishnaiah, K. “Anchors in Sand Bed:Delineation of Rupture Surface.” Ocean Engineering, Vol. 26, pp. 1249~1273, 1999.
30.中國土木水利工程學會,地錨設計與施工準則暨解說,第三版,科技圖書有限公司,2001。
31.Briaud, J. L., William, F., and Weatherby, D. E. “Should Grouted Anchors Have Short Tendon Bond Length?” Journal of Geothechnical and Geoenvironmental Engineering, ASCE, Vol. 124. No. 7, pp. 110~119, 1998.
32.林煜融,「台北盆地中摩擦型地錨之受力行為」,朝陽科技大學碩士學位論文,台中,2001。
33.李明慶,「砂土中多段錨碇式地錨之拉拔力-位移關係」,朝陽科技大學碩士學位論文,台中,1998。
34.Liao, H. J. and Hsu, S.T. “Discussion on Should Grouted Anchors Have Short Tendon Bond Lengths?” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 9, pp.810-812, 2000.
35.許世宗和廖洪鈞,「砂土中多段錨碇承壓式地錨之錨碇行為」,中國土木水利工學刊,第十二卷,第一期,第91~100頁,2000。
36.Duncan, J. M. and Chang, C. Y. “Nonlinear Analysis of Stress and Strain in Soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM5, pp. 1629~1653, 1970.
37.Lade, A. M. and Duncan, J. M., “Elastoplastic Stress-Strain Theory for Cohesionless Soil.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT10, pp. 1037~1053, 1975.
38.Merifield R. S., Lyamin A. V., Sloan S. W. and Yu H. S., “Three-Dimensional Lower Bound Solutions for Stability of Plate Anchors in Clay.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129. No. 3, pp. 243-253, 2003.
39.Hsu, S. T. and Liao, H. J., “Uplift Behaviour of Cylindrical Anchors in Sand.” Canadian Geotechnical Journal, Vol. 35, No. 1, pp. 70~80, 1998.
40.Meyerhof, G. G. and Adams J. I., “The Ultimate Uplift Capacity of Foundations.” Canadian Geotechnical Journal, Vol. 5, pp. 225~244, 1968.
41.Vermeer, P. A., and Sutjiadi, W., “The Uplift Resistance of Shallow Embedded Anchors.” Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 3, pp.1635~1638, 1985.
42.廖洪鈞和許世宗,「緊砂中承壓式垂直擴座地錨錨碇端之受力行為」,中國土木水利工學刊,第六卷,第二期,第137~148頁,1994。
43.廖洪鈞,「砂土中單段錨碇端受力行為和群錨行為之研究」,國科會專題研究報告,NSC80-0410-E-011-16,台北,1992 。
44.Turner, J. P. and Kullhawy, F. H., “Drained Uplift Capacity of Drilled Shafts under Repeated Axial Loading.” Journal of Geotechnical Engineering Division, ASCE, Vol. 116, No. 3, pp. 470~491, 1990.
45.Mark, P., Mitsch, A. M. Samuel, P., and Clemencem, M., “The Uplift Capacity of Helix Anchors in Sand.” Uplift Behavior of Anchor Foundations in Soil, ASCE, pp. 26~47, 1985.
46.許世宗和廖洪鈞,「沈泥質砂土中錐形擴座地錨之錨碇行為」,中國土木水利工程學刊,第十四卷,第三期,第393~404頁,2002。
47.李建中、姚錫齡、徐力平和施並淵,「地錨在台北沉泥質土層中之力學行為」,中華民國第三屆大地工程學術研討會論文集,墾丁,第659~670頁,1989。
48.日本土質工學會,「グラウンドアンカ�{設計,施工基準,同解說」,1990。
49.Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New York, 1987.
50.Vermeer, P. A. and deBorst, R., “Non-associated Plasticity for Soils, Concrete and Rock.” Heron, Vol. 29, No. 3, pp. 5~64, 1984.
51.Hansen, B., “Line Ruptures Regarded as Narrow Rupture Zones; Basic Equation Based on Kinematic Considerations.” Proceedings, Conference on Earth Pressure Problems, Brussels, Vol. 1, pp. 39~48, 1958.
52.Itasca Consulting Group, Inc., FLAC3D:Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, Vol. Ⅰ~Ⅳ, Minnesota, 1997.
53.Miura, S. and Toki, S., “A Sample Preparation Method and Its Effect on Static and Cyclic Deformation-Strength Properties of Sand.” Soils and Foundations, Vol. 22, No. 1, pp. 61~77, 1982.
54.Rowe, P. W., “The Relation between the Shear Strength of Sand in Triaxial Compression, Plane Strain and Direct Shear.” Geotechnique, Vol. 19, No. 1, pp. 75~86, 1969.
55.廖洪鈞,「砂土中摩擦地錨錨碇行為(Ⅱ)」,國科會專題研究報告,NSC83-0410-E-011-005,台北,1994。
56.Frydman, S., and Shaham, I., “Pullout Capacity of Slab Anchors in Sand.” Canadian Geotechnical Journal, Vol. 26, pp. 385~400, 1989.
57.Ghaly, M., and Clemence, P., “Pullout Performance of Inclined Helical Screw Anchor in Sand.” Journal of Geotechnical Engineering and Geoenvironmental Engineering Division, ASCE, Vol. 124, pp. 617-627, 1998.
58.Trofimenkov, J. G., and Mariupolskii, L. G., “Screw Piles Used for Mast and Tower Foundation.” 6th International Conference on Soil Mechanical and Foundation Engineering, University of Tornto, Canada, Vol. 2, pp. 328~332, 1965.
59.Robinson, K. E., and Taylor, H., “Section and Performance of Anchors for Guyed Transmission Towers.” Canadian Geotechnical Journal. Vol. 6, No. 2, pp. 119~137, 1969.
60.Harvey, R. C., and Burley, E., “Behavior of Shallow Inclined Anchorages in Cohesionless Sand.” Ground Engineering, ASCE, Vol. 118, No. 9, pp. 1499~1468, 1973.
61.Larnach, W. J., and McMullan, D. J., “Behaviour of Inclined Groups of Plate Anchors in Dry Sand.“ Proceeding Conference Institution of Civil Engineering London, England, pp. 153~156, 1973.
62.Radhakrishna, H. S., “Helix Anchor Tests in Sand.” Research Report, No. 76~130K, Ontario Hydro. Research Division, 1976.
63.Wang, M. C., and Wu, A. H., “Yielding Loading of Anchor in Sand.” Proceeding, Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering, R. N. Young and E. T. Selig, eds., ASCE, Reston, Va., pp. 291~307, 1980.
64.Sutherland, H. B., Finlay, T. W., and Fadl, M. O., “Uplift Capacity of Embeded Anchors in Sand.” Proceeding, Interational Conference. on the behavior of off-shore structure, Vol. 3, pp. 451~463, 1983.
65.Hanna, A. M., Das, B., and Foriero, A., “Behavior of Shallow Inclined Plate Anchors in Sand.” Proceeding, Special Topics in Foundations, Braja M. Das, ed., ASCE, Reston, pp. 54~72, 1988.
66.Duncan, J. M., Byrne, P., Wong, K. S. and Mabry, P., “Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analysis of Stress and Movments in Soil Masses,” Report No. USB/GT/80-1, University of California Berkeley, California, 1980.
67.American Concrete Institute (ACI)., Building Code Requirements for Reinforced Concrete and Commentary, ACI 318-95, ACI 318 R-95, Farmington Hill, Mich, 1995.
68.Zhang, Z. S.. “Finite Element Analysis for Retaining Structure with Anchor Slabs.” Fifth International Conference on Numerical Method in Geotechnical, pp. 797~830, 1985.
69.Liao, H. J. and Hsu, S. T., “Uplift Behavior of Blade- Underreamed Anchors in Silty Sand.” Journal of Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 6, pp. 560~568, 2003.
70.Jaky, J., “The Coefficient of Earth at Rest.” Magyer Menok es Epitesz Eyglet Kozloi(Journal Society of Hungarian Arch and Engineers), Hungary, 1944.
71.Murry, E. J., and Geddes, J. D., “Uplift of Anchor Plates in Sand.”Journal of Geotechnical Engineering, ASCE, Vol. 113, pp. 202~215, 1987.
72.陳珍貴,「砂土中地錨間距對錨碇行爲影響之模型研究」,台灣工業技術學院碩士論文,台北,1991。
73.廖洪鈞和蕭江寧,「台灣地區主要地層中地岩錨之施工方式和錨碇行為研究」,財團法人台灣營建研究中心,TR–78013,台北,1991。
74.廖洪鈞、潘竹旺和楊品錚,「台北盆地沉泥質土壤中摩擦地錨之錨碇行為」,中國土木水利工程學刊,第四卷,第四期,第279~288頁,1992
75.Evangelista, A. and G. Sapio, “Behavior of Ground Anchors in Stiff Clays.’’, Specialty Session No.4, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, pp. 39~47, 1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔