(54.236.58.220) 您好!臺灣時間:2021/03/08 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許雅真
研究生(外文):Ya-Chen Hsu
論文名稱:應用類啟發式演算法於複合材料板之高勁度設計與輕量化設計
論文名稱(外文):Maximum Stiffness Design and Minimum Weight Design of Laminated Composite Plates with Meta-Heuristic Algorithms
指導教授:賴峯民
指導教授(外文):Feng-Min Lai
學位類別:碩士
校院名稱:大葉大學
系所名稱:工業工程與科技管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:109
中文關鍵詞:遺傳基因演算法群蟻演算法混合螞蟻演算法有限元素法分層一階剪變形理論輕量化
外文關鍵詞:Genetic AlgorithmAnt Colony OptimizationHybrid-ANTFinite Element MethodLayerwise Linear Displacement TheoryMinimum Weight Design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以複合材料取代金屬物件為現行產業的趨勢,而複合材料疊層板之疊層排序將影響疊層位移與強度,進而造成疊層之脫層與破壞。本研究以分層一階剪變形理論的有限元素法推導複合材料板的位移與強度分析,並能正確地與多位學者的文獻相驗證,因此,採用分析後的數值作為最佳化的目標式。且將位移與強度分別對不同長寬比、厚度比、邊界條件和施力方式作分析與探討。
最佳化部分,分別以遺傳基因演算法、群蟻最佳化演算法與混合螞蟻演算法作為最佳的方法。最佳化分為三部份,分別為等厚度疊層板位移最佳化、非等厚度疊層板位移最佳化以及最佳強度之輕量化。並以最佳化之結果分別做討論與比較。
The displacement and first-ply failure load of laminated composites plates are calculated by finite element method based on layerwise linear displacement theory. The analysis results have differences slightly with published practical results. The research uses a genetic algorithm, ant colony optimization and Hybrid-ANT to find the optimal stacking sequence and thickness of laminated composites plates under various loading, aspect ratios, thicknesses and boundary conditions.
The maximum stiffness design of laminated composite plates with based on present analysis method subject to constant thicknesses and unconstant thicknesses. The minimum weight design of laminated composite plates with based on first-ply failure analysis technique subject to strength and thicknesses constrains. The objective of the present research is to explore various techniques for improving the efficiency of the optimal algorithm. The optimal fiber angles and thicknesses are solved by three type optimal algorithms.
Table of Contents
封面內頁
簽名頁
授權書 iii
中文摘要 iv
Abstract v
Acknowledgements vi
Table of Contents vii
Table of Figures x
Table of Tables xi

Chapter 1 Introduction 1
1.1 Background 1
1.2 Literatures Review 2
1.2.1 Literatures Review of Laminated Composite Plates 2
1.2.2 Literatures Review of Optimizations 3
1.3 Object of Research 4
Chapter 2 Theoretical Formulation 7
2.1 Displacement Field 7
2.2 Strain and Displacement 8
2.3 Stress and Strain 9
2.4 Stiffness Matrices 11
2.4.1 Finite Element Indication of Displacement Field of Element 11
2.4.2 Strains of Laminated Composite Plate 12
2.4.3 Stiffness Matrices in Laminated Composite Plates 13
2.5 Finite Element Formulation 16
2.5.1 Tsai-Wu failure criterion 18
2.5.2 Tsai-Hill failure criterion 19
Chapter 3 Optimal Design 21
3.1 Genetic Algorithm 21
3.1.1 Initial Population and Encoding 21
3.1.2 Evaluation and Fitness 22
3.1.3 Selection and Reproduction 23
3.1.4 Crossover 23
3.1.5 Mutation 24
3.2 A Basic Genetic Algorithm for Laminate Design 26
3.2.1 The Procedure of GA 27
3.3 Ant Colony Optimization (ACO) 33
3.3.1 The Steps of ACO 34
3.3.2 Optimal Design of Process by ACO 37
3.3.3 Parameters Setting 43
3.4 Hybrid-Ant 44
3.5 Minimum Probability Procedure 46
3.6 Minimum Weight Design 46
3.6.1 The Constraint of Thickness Optimal Design Problem 46
3.6.2 The Constraint Thickness of Optimal Design Example 50
Chapter 4 Numerical Examples and Discussion 54
4.1 Demonstration Investigation 54
4.1.1 Comparisons with Three-Dimensional Elasticity Solution [17] 54
4.1.2 Comparison of Center Deflections and Fist-Ply Failure by Reddy [18] 57
4.1.3 Comparing Results with Experimental Data by Kam [19] 58
4.2 Parameters Design and discussion 60
4.2.1 Parameters Design and Methods in Study 60
4.2.2 Parameters in Optimization 63
4.3 Result and discussion 64
4.3.1 Minimum Displacement with constant thickness 65
4.3.2 Minimum Displacement with unconstant thickness 69
4.3.3 Minimum Weight Design 76
Chapter 5 Conclusions and Further Research 80
5.1 Conclusions 80
5.2 Extension for Further Research 81
References 82

Appendix 86



Table of Figures
Figure 1 Research flow chart 6
Figure 2 Displacement field components of 5 layer groups 8
Figure 3 Integration points in a layer group of an element 17
Figure 4 Binary strings 22
Figure 5 Traditional one-point crossover 24
Figure 6 Flow chart of genetic algorithm 25
Figure 7 Roulette wheel 30
Figure 8 Crossover type 31
Figure 9 Flow Chart of ant colony optimization (ACO) 36
Figure 10 Flow Chart of the Augmented Lagrange multiplier method 49
Figure 11 Coordination system of a composite plate 61
Figure 12 Boundary conditions of laminates composite plates 62
Figure 13 GA generation convergence of problem I 64
Figure 14 ACO generation convergence of problem I 64
Figure 15 Branch and bound tree of optimal design 70


Table of Tables
Table 1 Coding number of orientations 27
Table 2 Encoding type 28
Table 3 Fitness function of each chromosome 29
Table 4 Reproduction 30
Table 5 Crossover 31
Table 6 Random values assigned to gene for mutation 32
Table 7 Mutation 32
Table 8 Values of object function after mutation 33
Table 9 Parameters of ACO 37
Table 10 Coding number of orientations 38
Table 11 Coding number of laminate thicknesses 38
Table 12 4th variable 39
Table 13 3rd variable 39
Table 14 2ed variable 40
Table 15 1st variable 40
Table 16 4th variable of second generation 41
Table 17 3rd variable of second generation 41
Table 18 2ed variable of second generation 42
Table 19 1st variable 42
Table 20 Comparison of initial and after generate solution 43
Table 21 The parameters of optimal design 50
Table 22 The initial solution of ACO 51
Table 23 The generation of trail [3] of ACO 51
Table 24 The generation of trail [2] of ACO 52
Table 25 The final solution of first ant 53
Table 26 Deflections and stresses in simple supported three layer cross-ply[0°/ 90 / 0°] square laminate under uniform pressure 55
Table 27 Deflections and stresses in simple supported three layer cross-ply [0°/90°/0°] square laminate under central point load 56
Table 28 Material II properties of T300/5208 graphite/epoxy pre-peg 57
Table 29 Comparison of centre deflection for a load 58
Table 30 Linear first-ply failure loads for a transverse concentrated load with [90°/0°/90°/0°] 58
Table 31 Material III properties of composite material 59
Table 32 Experimental and analytical first-ply failure loads of the [0°4/90°4]s plates 59
Table 33 Experimental and analytical first-ply failure loads of the [0°8/90°8]s plates 60
Table 34 Material IV properties of composite materials 60
Table 35 Properties of laminate plates 61
Table 36 Optimal designs in this study 62
Table 37 Parameter setting of algorithms 63
Table 38 Optimal displacement in a simple supported laminated plate (a/h=10) 65
Table 39 Optimal design with various aspect ratios for simple supported under center load (a/h=10) 66
Table 40 Optimal design of various thickness ratios with NL=7 (a/b=1.0) 66
Table 41 Optimal design of various aspect ratios with NL=7 (a/h=10) 67
Table 42 The optimal design of various optimal algorithms (a/b=0.5) 68
Table 43 The optimal angles of GA and Enumeration (NL=3) 68
Table 44 The optimal angles of GA and Enumeration (NL=5) 69
Table 45 Comparison of constant and unconstant thickness under center load (a/h=10, NL=7) 69
Table 46 Comparison of constant and unconstant thickness under uniform pressure (a/h=10, NL=5) 70
Table 47 The comparison of initial thickness ratios and after branch and bound tree in NL=5 with a/h=10 and a/b=1.0 71
Table 48 Optimal design of various thickness ratios with unconstant thickness NL=7 (a/b=1.0) 72
Table 49 Optimal design of various aspect ratios with unconstant thickness NL=7 (a/h=10) 73
Table 50 The comparison of GA and ACO for unconstant thickness in simple supported plate (a/h=4) 74
Table 51 The optimal angles and time in simple supported plate under center load (a/h=4, a/b=1.0) 75
Table 52 The results for the minimum weight design with clamped plates under uniform load (Pc=5.4×105 N) 76
Table 53 The results for the minimum weight design with simple supported plates under uniform load (Pc=5.4×105 N) 77
Table 54 The results for the minimum weight design with clamped plates under center load (Pc=600 N) 77
Table 55 The results for the minimum weight design with simple supported plates under center load (Pc=600 N) 78
Table 56 The comparison of GA and ACO for minimum weight design 79
References
[1] B .N. Pandya and T. Kant, “Higher-order shear deformable theories for flexure of sandwich plates – finite element evaluations,” Int. J. Solids Struct., 1267-1286, 1988.
[2] T. Kant and B.N. Pandya, “Finite element evaluation of interlaminar stresses based on first and higher-order theories,” Proc. Workshop-cum-Seminar on Delaminated in Composites, 85-103, 1987.
[3] Park, W. J., “An optimal design of simple symmetric laminates under the first ply failure criterion,” J. Compos. Mater., Vol.16, 341-355, 1982.
[4] Hirano, Y., “Optimum design of laminated plates under shear,” J. Compos., Vol.13, 324-334, 1979.
[5] Lo KH, Christensen RM, Wu EM. “A high-order theory of plate deformation part 2: laminated plates,” J Appl Mech, 669-676, 1977.
[6] Masond Tahani, Asghar Nosier, “Edge effects of uniformly loaded cross-ply composite laminates,” Materials and Design, 647-658, 2003.
[7] Murthy PLN and Chamis CC, “Free-edge delamination: laminate width and loading condition effects,” j Comp Technol res, 15-22, 1989.
[8] T . Y. Kam and F. M. Lai, “Experimental and theoretical predictions of first-ply failure strength of laminated composite plates,” International journal of solids and structures, Vol.36, 2379-2395, 1999.
[9] David C. Zimmerman, “A Darwinian approach to the actuator number and placement problem with non-negligible actuator mass,” Mechanical systems and signal processing, 363-374, 1993.
[10] Adali, S. and Duffy, K. J., “Design of antisymmetric hybrid laminates for maximum buckling load: I. Optimal fiber orientation. II. Optimal layer thickness,” Compos. Struck., 49-60, 113-124, 1990.
[11] Ball, N. R., Sargent, P. M. and Ige, D. O., “Genetic algorithm representations for laminate lay-ups,” Artificial Intell. Engng, 99-108, 1993.
[12] Miki, M., “Optimum design of fibers laminated composite plates subject to axial compression,” Japan-US Compos. Mater. Conf., 1017-1019, 1979.
[13] R. Le Riche and R. T. Haftka, “Improved genetic algorithm for minimum thickness composite design,” Composites Engineering, Vol. 5, 143-161, 1995.
[14] M. Walker, R. E. Smith, “A technique for the multiobjective optimization of laminated composite structures using genetic algorithms and finite element analysis,” Composite Structures, Vol.62, 123-128, 2003.
[15] J. H. Park, J. H. Hwang, C. S. Lee and W. Hwang, “Stacking sequence design of composite laminates for maxmum strength using genetic algorithms,” Composite Structures, Vol.52, 217-231, 2001.
[16] Ching-Chieh Lin, Ya-Jung Lee, “Stacking sequence optimization of laminated composite structures using genetic algorithms with local improvement,” Composite Structures, Vol.63, 339-345, 2004.
[17] B. N. Pandya and Tarun Kant, “Flexural analysis of laminated composites using refined higher-order℃ plate bending elements,” Computer methods in applied mechanics and engineering, 173-198, 1988.
[18] Y. S. N. Reddy and J. N. Reddy, “Linear and non-linear failure analysis of composite laminates with transverse shear,” Composite science and technology, 227-255, 1992.
[19] T. Y. Kam and T. B. Jan, “First-ply failure analysis of laminated composite plates based on the layerwise linear displacement theory,” Composite structures Vol.32, 583-951, 1995.
[20] John Holland, Adaptation in Natural and Artificial System, University of Michigan Press, 1975.
[21] M. Dorigo, V. Maniezzo, A. Colorni, “Positive feedback as a search strategy,” Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, IT, 1991.
[22] J. A. Snyman and L. P. Fatti, “A multi-start global minimization algorithm with dynamic search trajectories,” Journal of optimization theory and applications, Vol.54, 121-141, 1987.
[23] Garret N. Vanderplaats, “Numerical optimization techniques for engineering design: with application,” McGraw-Hill, New York, 1984.
[24] Mark Walker, Talmon Reiss and Sarp Adali, “Optimal design of symmetrically laminated plates for minimum deflection and weight,” Composite structures, Vol. 39, 337-346, 1997.
[25] M. Walker, “A method for optimally designing laminated plates subject to fatigue loads for minimum weight using a cumulative damage constraint,” Composite structures, Vol. 48, 213-218, 2000.
[26] T. Y. Kam, F. M. Lai and S. C. Liao, “Minimum weight design of laminated composite plates subject to strength constraint,” AIAA Journal, Vol.34, 1699-1708, 1996.
[27] Maniezzo V., Colorni A., Dorigo M., “The Ant system applied to the quadratic assignment problem,” Technical Report IRIDIA/94-28, IRIDIA, Université Libre de Bruxelles, Belgium, 1994.
[28] E.-G. Talbi, O. Roux, C. Fonlupt, D. Robillard, “Parallel ant colonies for the quadratic assignment problem”, Future Generation Computer System,” Vol.17, 441-449, 2001.
[29] Dorigo M., Maniezzo, V. and Colorni, A., “The ant system: optimization by a Colony of Cooperating Agents,” IEEE Transactions on Systems, 1996.
[30] Bauer, A., Bullnheimer, B., Hartl, R.F. and Strauss C., “Minimizing total tardiness on a single machine using ant colony optimization,” Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Press, Vol.2, 1445 -1450, 1999.
[31] Yuan-Jing Feng and Zu-Ren Feng, “An immunity-based ant system for continuous space multi-modal function optimization,” IEEE Proceeding of the Third International Conference on Machine learning and Cybernetics, 1050-1054, 2004.
[32] Jen-Hao Teng, Yi-Hwa liu, “A novel ACS-based optimum switch relocation method,” IEEE Transactions on Power Systems, Vol.18, 113-120, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔